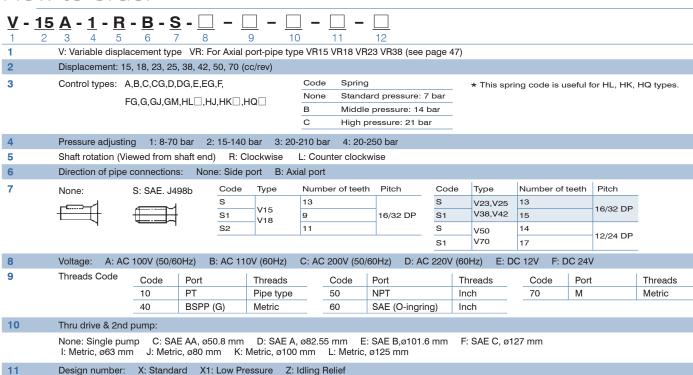


AXIAL PISTON PUMPS



FEATURES:

- 1. Combining special internal designs and strict engineering disciplines has reduced noise level to new lows in whole pressure zones.
- Depending on variety of application needs multiple optional unique control
 methods are available. It does not only reduce a number of unnecessary
 hoses, pipes and control valves but also increase efficiency and save
 horsepower, and cost.
- Less capacity reservoirs can be selected and applied because of performances of low pressure loss and less head generation.
- 4. Wide application ranges: it is very suitable for machine tools, plastic injection molding machines, forging machines, other industrial machines and so on.

How to order

Specifications

Links type (For V15, V18): None: Standard A: SAE A 2 bolt

12

Model	Displacement cc/rev		Inloading Conditions (Ipm) (GPM)		Max. Pressure	Input Speed Range (rpm)		Weight
	(in³/rev)	1500 rpm	1800 rpm	Range bar (psi)	bar (psi)	Min.	Max.	(kg)
V15A	15 (0.90)	22.5 (5.78)	27.0 (7.05)					13
V18A	17.8 (1.09)	26.7 (7.05)	32.0 (8.45)		250 (3500)			13
V23A	23.0 (1.40)	35.4 (9.11)	41.4 (10.94)					22
V25A	25.0 (1.52)	37.5 (9.66)	45.0 (11.60)	1: 8-70 (115-100)	210 (3000)			22
V38A	37.8 (2.31)	56.7 (14.98)	68.0 (17.96)		250 (3500)			26
V42A	42.0 (2.56)	63.0 (16.23)	76.0 (19.58)	2: 15-140 (210-2000)				26
V50A	51.5 (3.14)	77.2 (20.37)	92.7 (4.49)		210 (3000)	500	1800	55
V70A	69.7 (4.25)	104.5 (27.60)	125.4 (33.13)	3: 20-210 (280-3000)		500	1600	56
V15A-V15A	15 / 15	22.5 / 22.5	27 / 27					28.5
V23A-V23A	23.0 / 23.0	35.4 / 35.4	41.4 / 41.4	4: 20-250 (280-3500)	050 (0500)			46.5
V15A-V38A	15 / 37.8	22.5 / 34.5	27 / 68	4. 20-230 (200-0300)	250 (3500)			41.5
V38A-V38A	37.8 / 37.8	56.7 / 56.7	68 / 68					54.5
V15A-V70A	15 / 69.7	22.5 / 104.5	27 / 125.4		010 (0000)			71.5
V38A-V70A	37.8 / 69.7	56.7 / 104.5	68 / 125.4		210 (3000)			84.5

Control Types

Control Types	JIS Symbols	Characteristics	Feature
A: Pressure Compensator Control		P →	When system pressure increase and reach preset pressure the flow decrease automatically and pressure maintain without changing. Power and pressure can be adjusted manually.
B : Multi-stage Flow & Single stage Pressure Control Type (With Cylinder)	OUT DRLLL IN	$\uparrow \\ Q \\ P \rightarrow$	Flow can be adjusted from 0 to maximum and pressure can be maintaining at preset pressure. Absorbing impact and vibration which are produced by up and down motions of actuators. It is suitable for lifting equipment etc.
C: 2 stage Pressure & Flow Control Type		QH	1. Low consumption electric motor can be selected to save energy because of the functions of high flow at low pressure and low flow at high pressure. 2. When pressure increase and reach preset pressure "PH", flow is reduced to "QL". 3. Pressure "PH""PL", and Flow "QH""QL" can be adjusted optionally. 4. It is applied to actuators requiring long unloaded or short loaded strokes. Speedy and horsepower efficient.
CG: 2 stage remote Pressure & Flow Control Type		$Q^{QH} \longrightarrow PH$ $P \longrightarrow PH$	1. The same function of "C" control type. 2. The pressure and the range can be adjusted remotely by the integrated remote pressure control valve. 3. Proportional Electro-hydraulic pressure control can be applied with HYDROME proportional valve.
D: Solenoid Controlled Pressure Compensating Type with Unloading Device		Q SOLOFF SOLON	Same as type A and unloading function added. It is applied to systems requiring long term unloading operation. When solenoid is turned off, pump operation under unloading condition maintains low noise level and oil heat generation.
DG: Solenoid Controlled Pressure Compensating Type with Unloading & Remote Device		Q SOLOFF SOLON	1. The same function of "C" control type. 2. The pressure and the range can be adjusted remotely by the integrated remote pressure control valve. 3. Proportional Electro-hydraulic pressure control can be applied with HYDROME proportional valve.

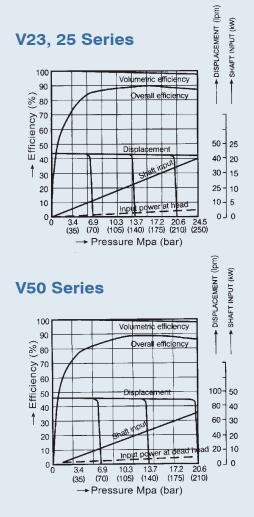
Control Types

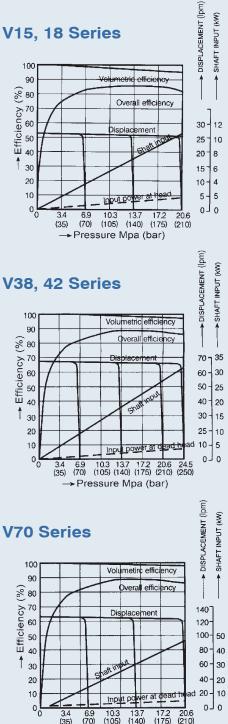
Control Types		Obawastawiatiaa	Factoria.
Control Types	JIS Symbols	Characteristics	Feature
E: Dual Pressure Control		SOL OFF SOL ON PL PH P —	1. Preset high and low pressure can be controlled by switching directions of solenoid control valves. 2. This type is applied to actuators requiring 2 stage pressures with single speed. 3. One of "PL" and "PH" can be optionally be high pressure.
EG: Dual & Remote Pressure Control		Q SOL OFF SOL ON PL PH P PH	1. The same function of "E" control type. 2. The pressure and the range can be adjusted remotely by the integrated remote pressure control valve. 3. Proportional Electro-hydraulic pressure control can be applied with HYDROME proportional valve.
F: 2 flow-2 pressure p.c.by solenoid operated valve		SOL OFF SOL ON PL PH PH	1. Actuators can be shifted slowly (high pressure low flow) and quickly (low pressure high flow) by switching directions of solenoid control valve. When solenoid valve turns on, pressure increase to "PH", and flow decrease to "QL". 2. Pressure "PL", "PH" and flow "QL", "QH" can be adjusted optionally. 3. This type is applied to actuator requiring operations of shift speed from high to low or low to high.
FG: 2 flow-2 pressure p.c. by solenoid operated & remote valve		QOL SOLON PL PH	1. The same function of "F" control type. 2. The pressure and the range can be adjusted remotely by the integrated remote pressure control valve. 3. Proportional Electro-hydraulic pressure control can be applied with HYDROME proportional valve.
G: Remote pressure compensator control		↑ Q P→	The same function of "A" control type. Pressure can be adjusted remotely by the integrated remote pressure control valve.
GJ: Proportional Pressure with interface		Q	Same as Type "GM" and proportional valve added. The proportional valve is installed on the NG 6 interface to reach Proportional Electro-hydraulic control to save energy.

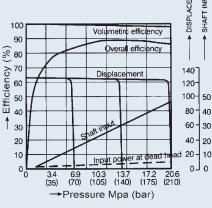
Control Types

Control Types	JIS Symbols	Characteristics	Feature
GM: Remote Interface (Not include pilot valve)		Q	1. GM control with a NG6 interface, supply an installation for pilot valve to prove the operating pressure. The pressure setting can be set directly from the control panel of the machine. 2. The remote pressure compensator responds faster and offers more stable pressure. 3. The adjustment can also be manual or proportional pressure control.
HL: Load Sensing Compensator		↑ Q P→	The pump outlet can be controlled by the setting pressure value of flow control valve. An ideal energy conservation system can be configurated by combining the proportional directional control. 2. When setting pressure value, flow is changed depending on throttle valve. The sensing flow feedback function can reach to low oil heat generation and saving energy.
HJ: Load Sensing & Proportronal Electro-hydraulic Pilot Relief Valve		Q P → Electricity	Same as Type "HL" and proportional pressure function added. Supplied with proportional Electro-hydraulic pilot relief valve can reach to horse-saving and energy-saving.
HK: Proportional Electrohydrauic Load Sensing Type		↑	1. HK type supplies the system pressure and flow depending on the proportional pressure and flow, voltage, and load value to save the energy. When in waiting circle, the outlet displacement and horse power loss are colse to zero. When pressure reaches to preset value, the flow decrease to the min., and the pressure is constant to reach low oil heat generation and energy loss. 2. HK type can save 30%~50% energy compare to vane pump and gear pump+PQ valve. It is an energy-saving and environmental design.
HQ: Load-sensing Proportional Flow control	J2	Q	Same as Type "HL" and proportional flow function added. The proportional flow control allows the adjustment of the pumps output flow with an electrical input signal. Supplied and adjusted the displacement by the electronic control module.

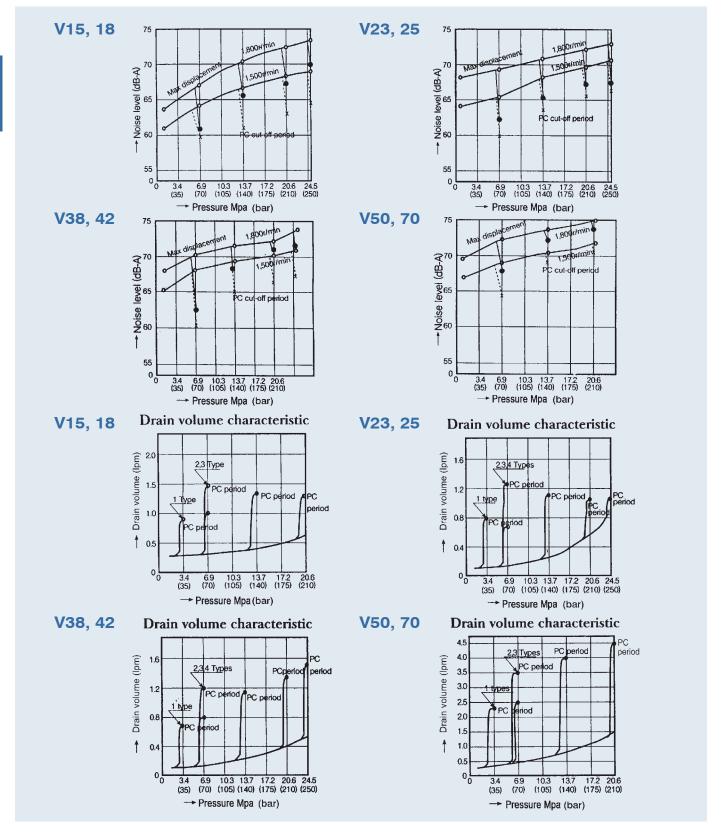
Performance curves

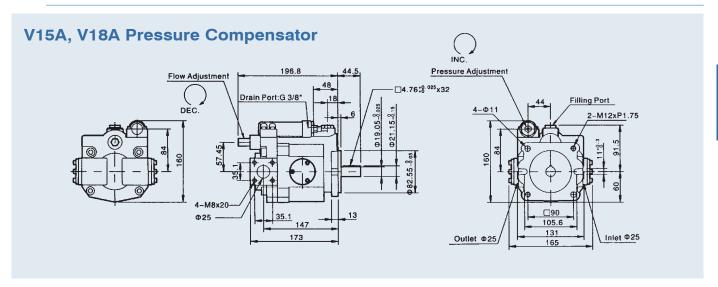

MEASURING CONDITIONS

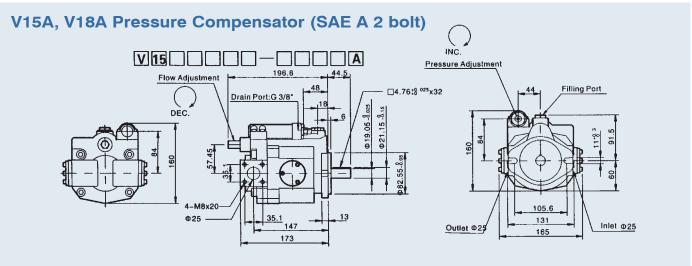

ROOM TEMPERATURE: 20 ± 2°C SPEED OF ROTATION:1800 rpm

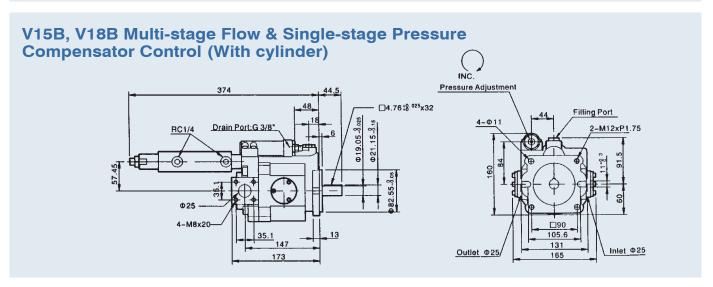

OIL:ISO VG 32-68 OIL CAPACITY:40 lpm

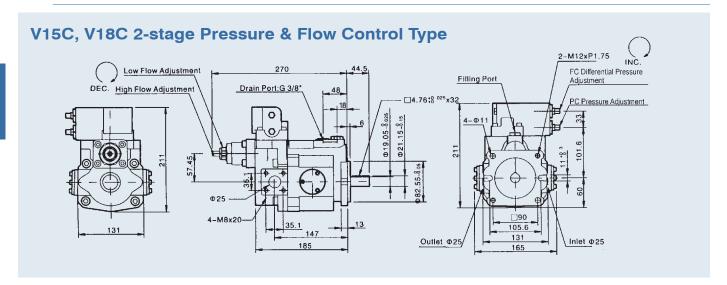
ADOPTS SEALED CIRCUIT:70 bar

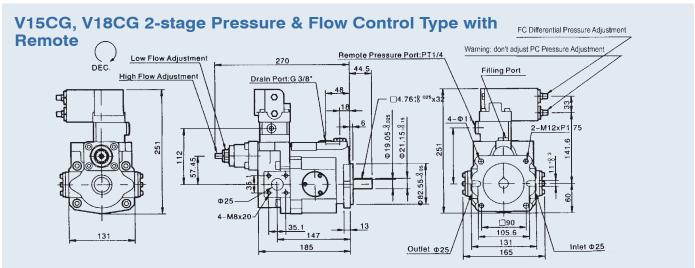

ADJUST PRESSURE:35 bar

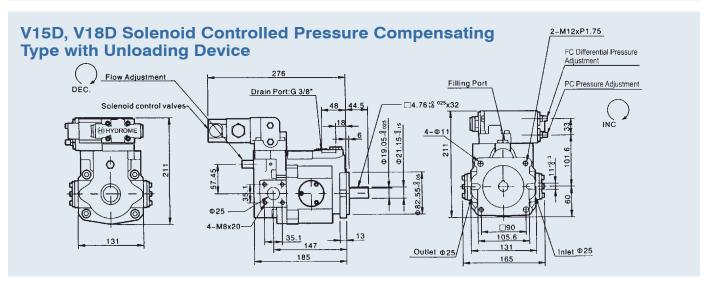


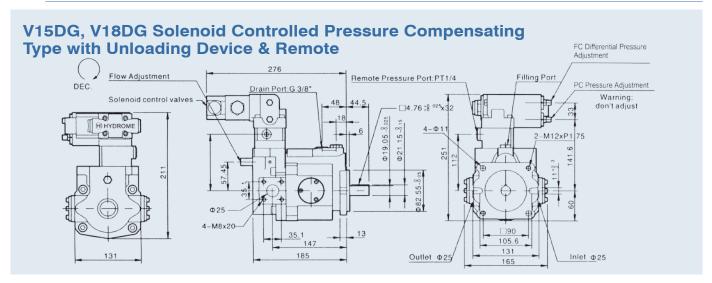


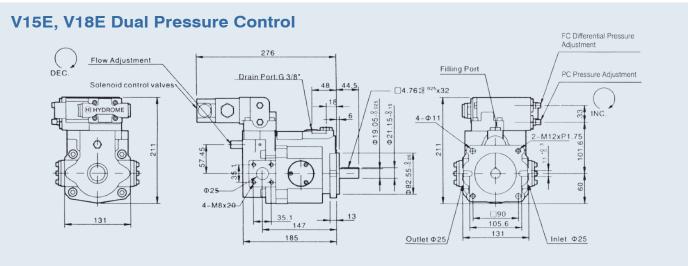


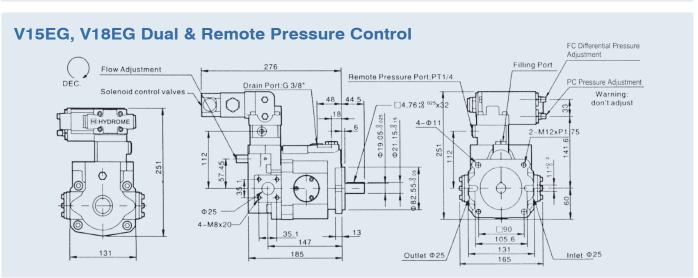

Performance curves

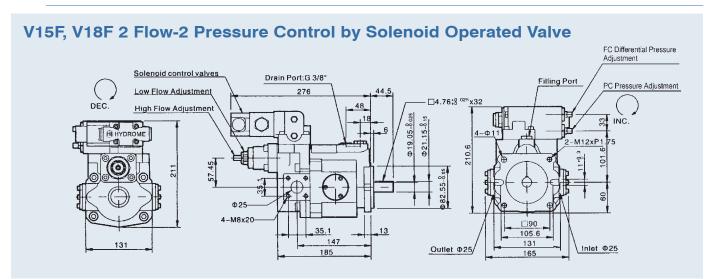


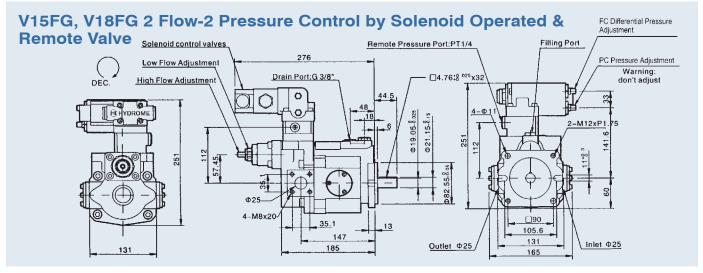


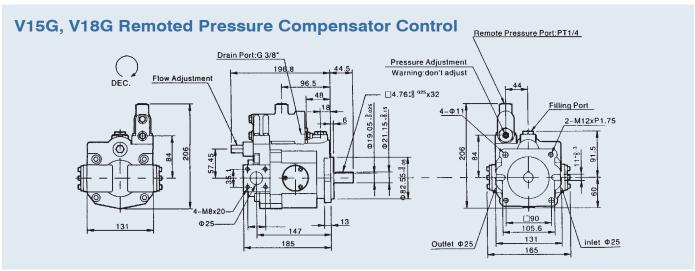


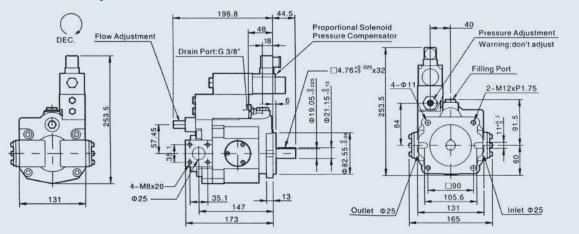


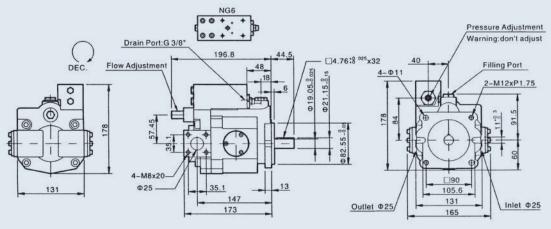






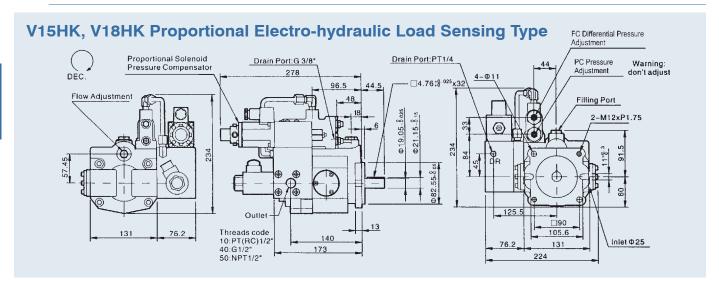


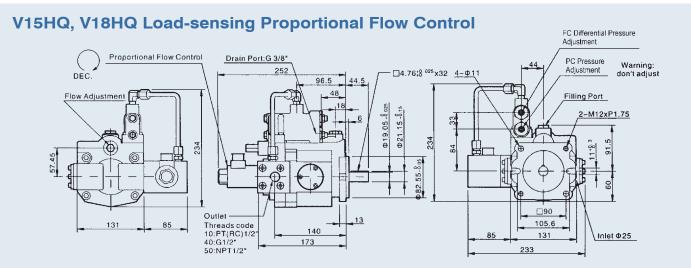


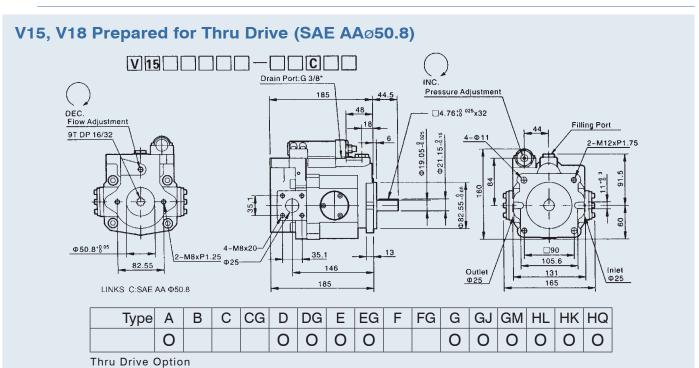


Dimensions

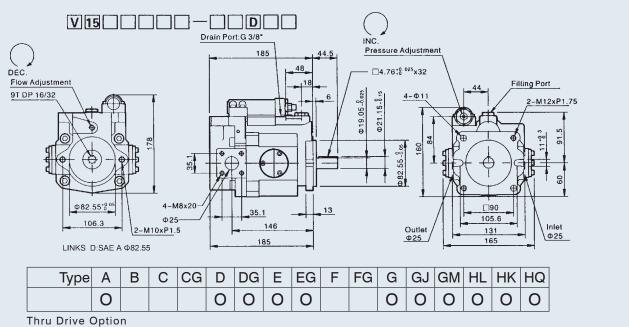
V15GJ, V18GJ Proportional Pressure with Interface



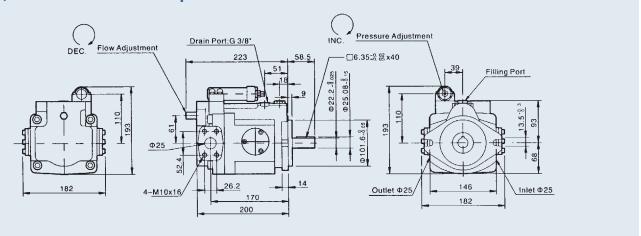

V15GM, V18GM Remote Interface (Not include valve)

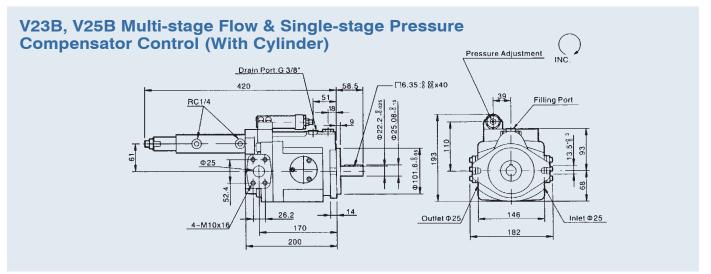

V15HL, V18HL Load-sensing Compensator FC Differential Pressure Adjustment Drain Port: G 3/8" Load sensing Port:PT1/4 PC Pressure Adjustment 96.5 Flow Adjustment DEC □4.76 ÷0.025 x32 48 Filling Port Φ21.15 -6.15 -M12xP1.75 (D) 206 4-M8x20 □90 Φ25 35.1 131 105.6 Inlet Ф25 131 Outlet Φ25

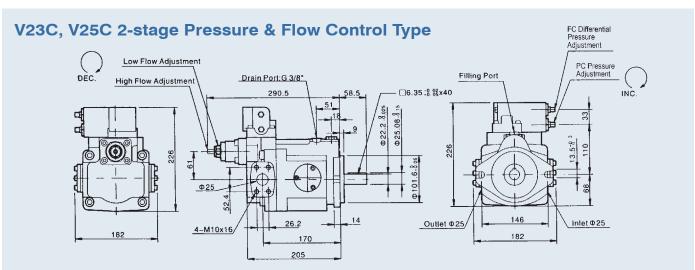
Dimensions

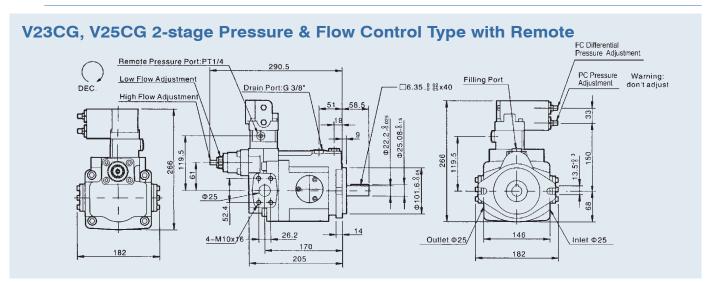


V15, V18 Splined Shaft Type V15, V18 Hydraulic Flange 31.1 Outlet Inlet Inlet □35.1 50.8 ∐35.1 Ŧ Φ Φ Φ82.55 -8 os 50.8 \oplus Threads code Threads code 22 13.5 Φ24 10:PT(RC)3/4" 40:BSPP(G)3/4" 50:NPT3/4" PT(RC) 3/4* 31.5 25.1 S:13T DP16/32 S1:9T DP16/32

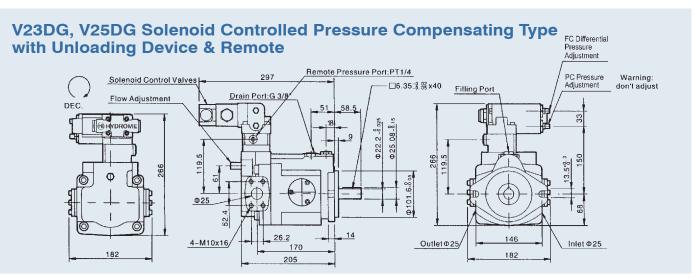


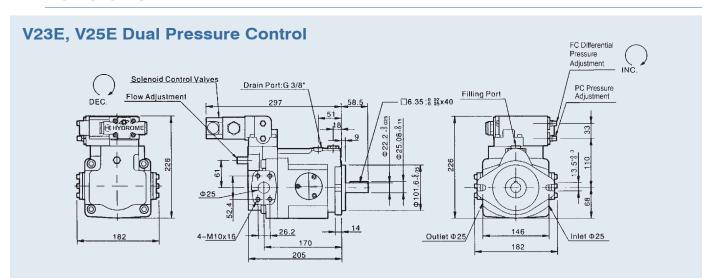


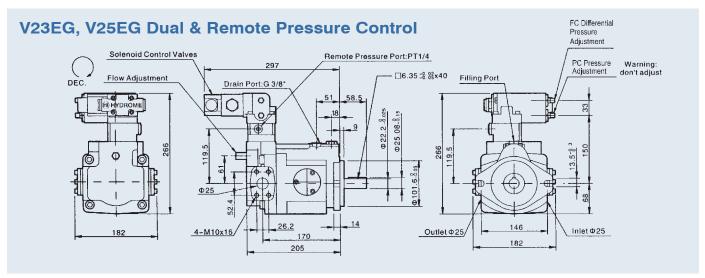


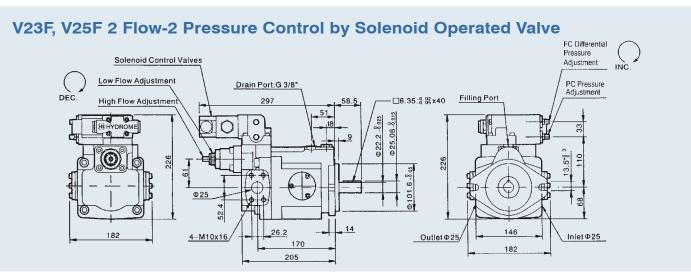

Dimensions

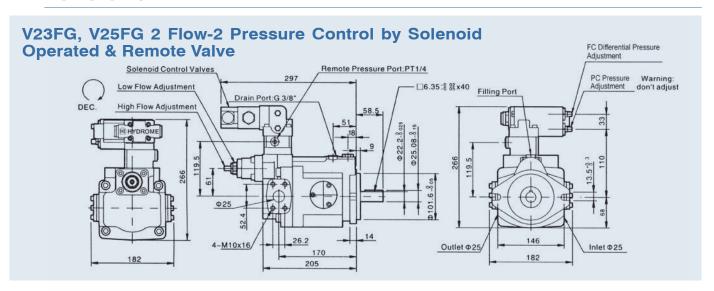

V23A, V25A Pressure Compensator

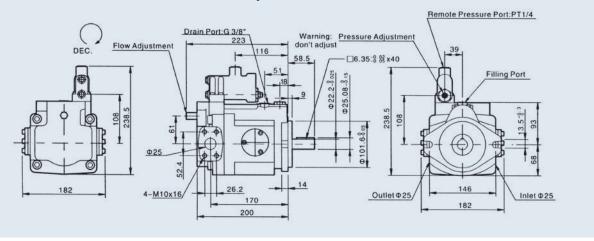


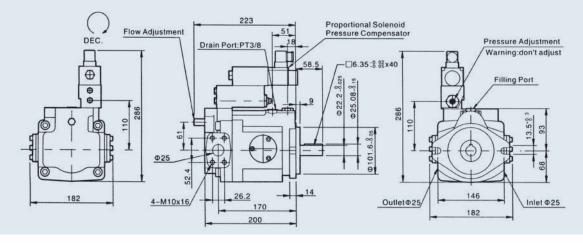




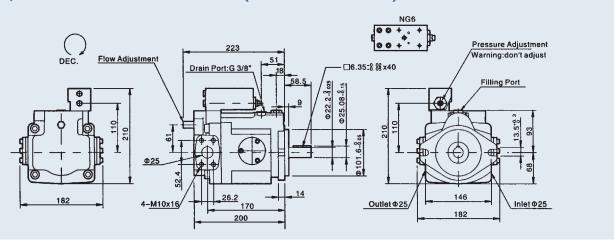


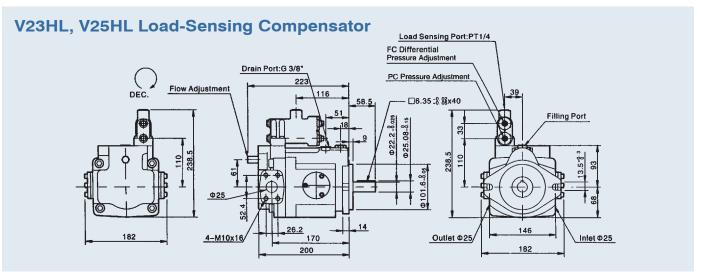


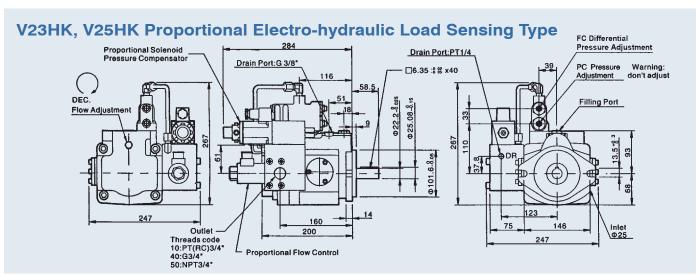



Dimensions

V23G, V25G Remoted Pressure Compensator Control

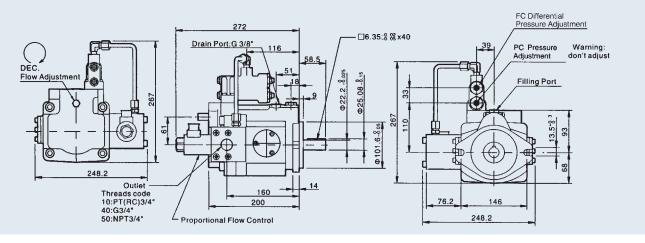


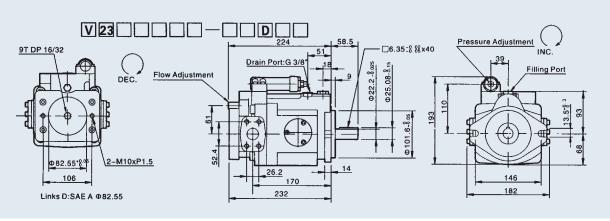

V23GJ, V25GJ Proportional Pressure with interface

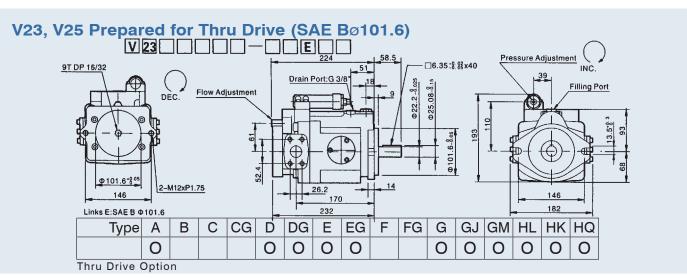


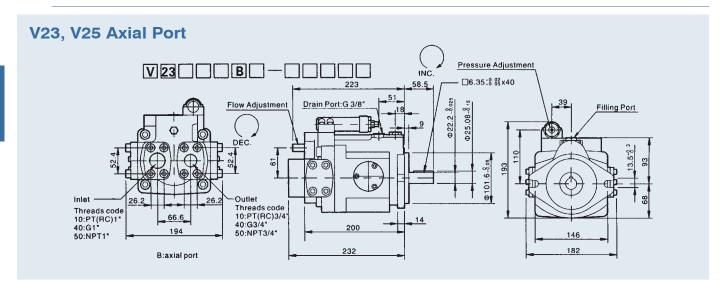
Dimensions

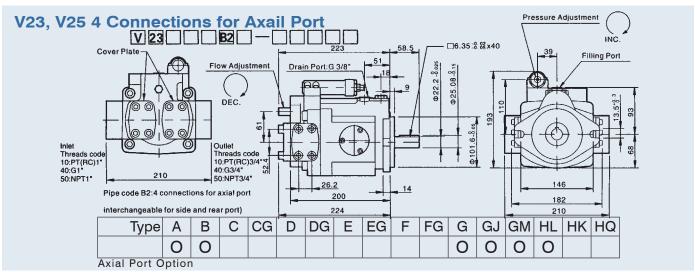
V23GM, V25GM Remoted Interface (Not include valve)

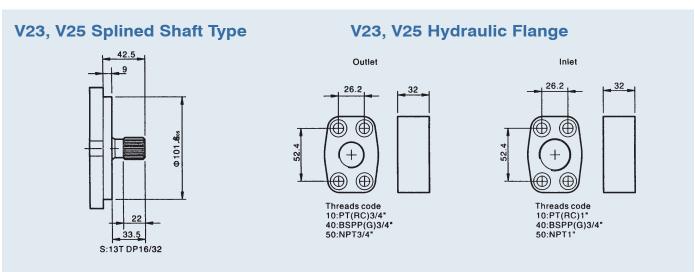


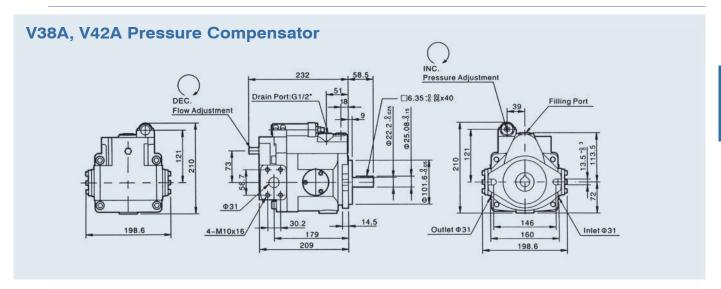


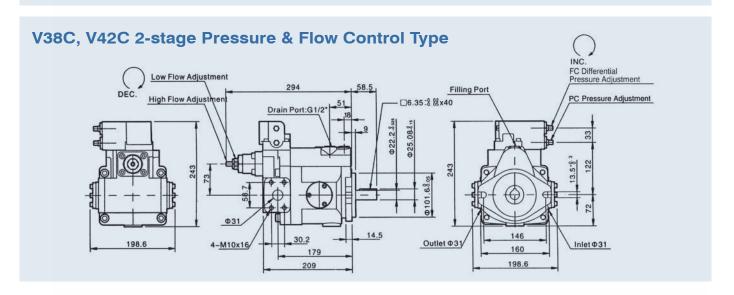

Dimensions

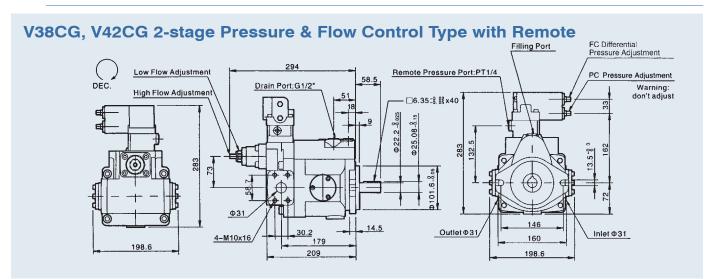

V23HQ, V25HQ Load-Sensing Proportional Flow Control

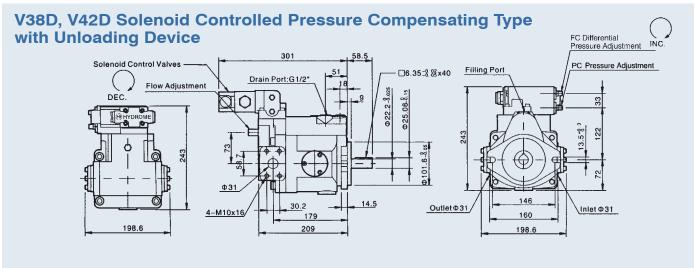


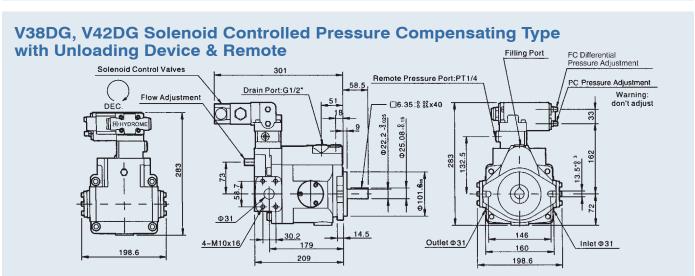

V23, V25 Prepared for Thru Drive (SAE AØ82.55)



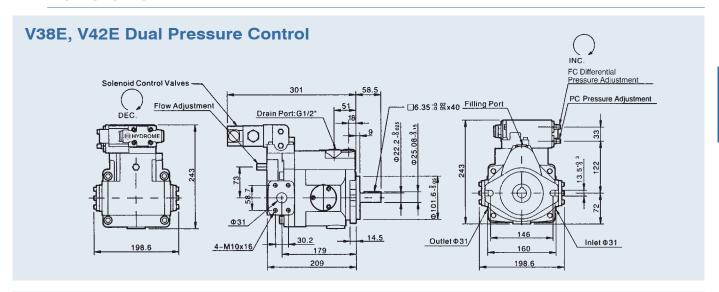


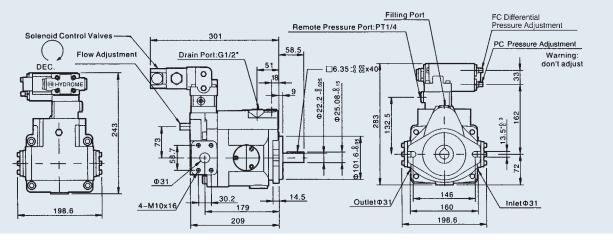


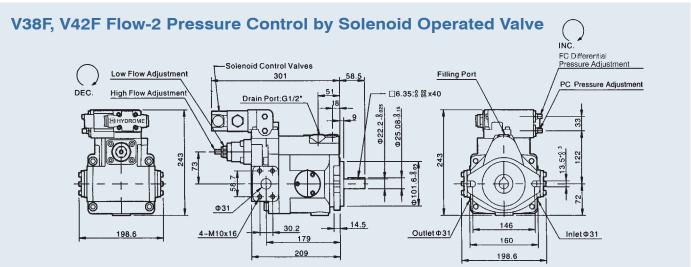

Dimensions



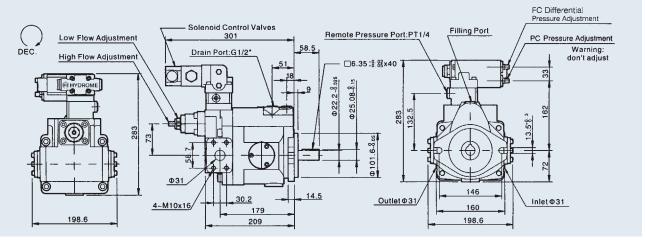
198.6

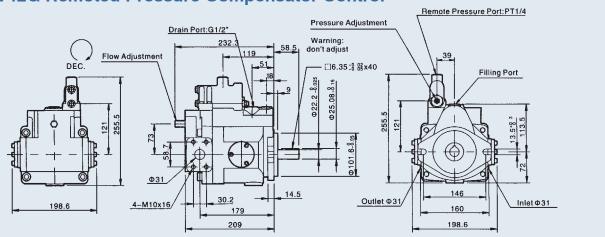




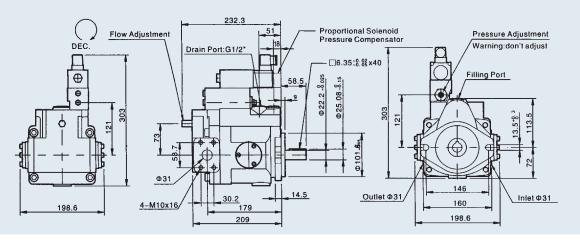


Dimensions

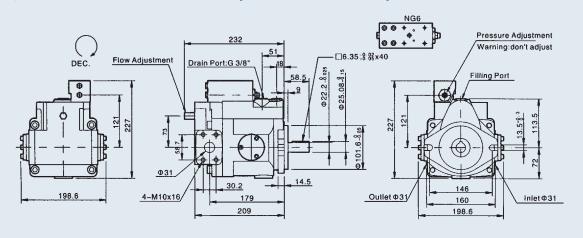

V38EG, V42EG Dual & Remote Pressure Control



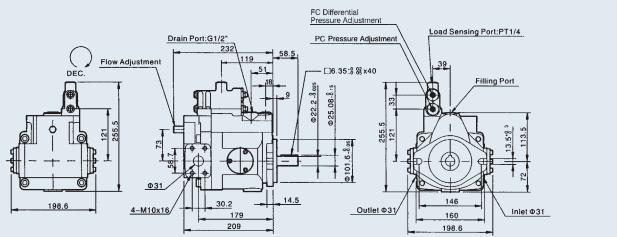
Dimensions

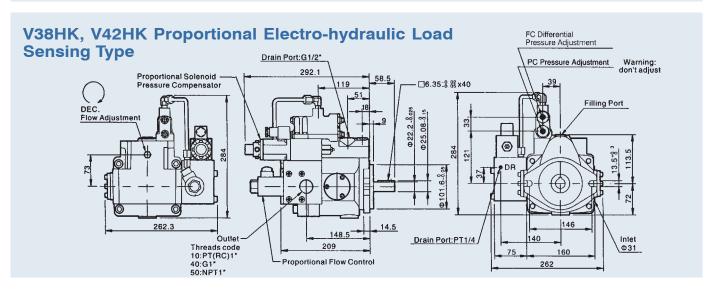

V38FG, V42FG 2 Flow-2 Pressure Control by Solenoid Operated & Remote Valve

V38G, V42G Remoted Pressure Compensator Control

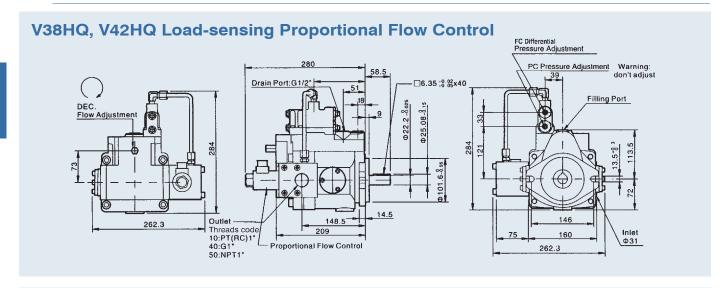


V38GJ, V42GJ Proportional Pressure with Interface

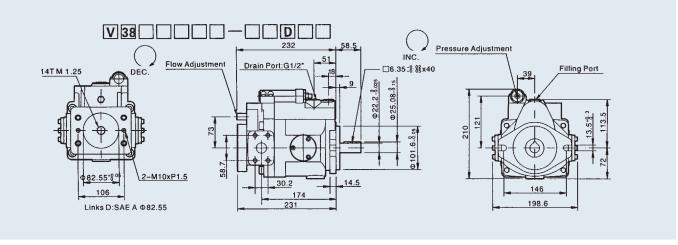


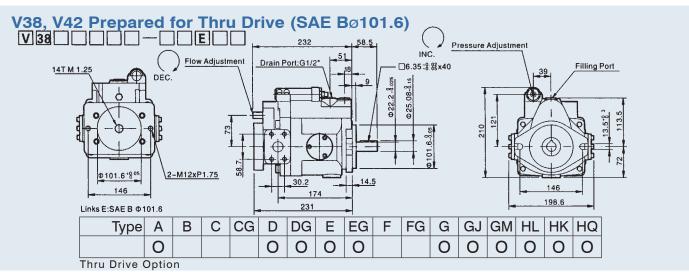

Dimensions

V38GM, V42GM Remote Interface (Not include valve)

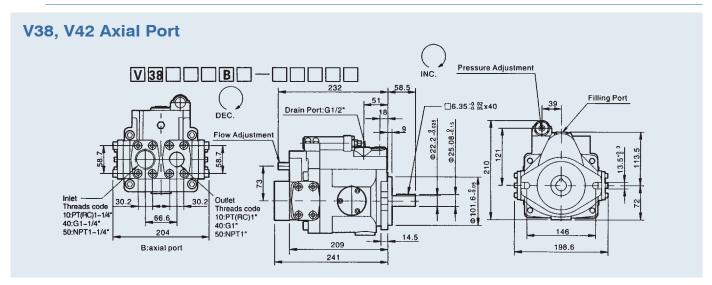


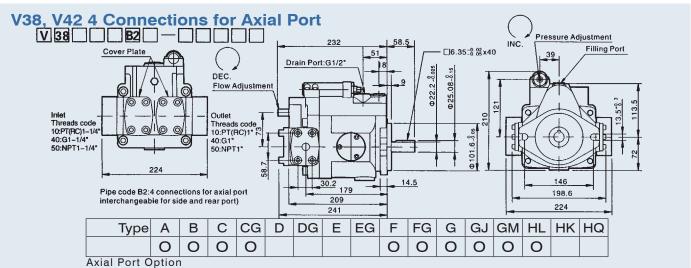
V38HL, V42HL Load-sensing Compensator



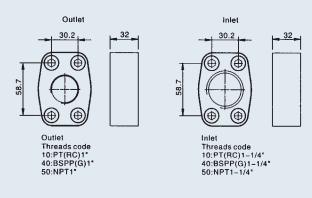


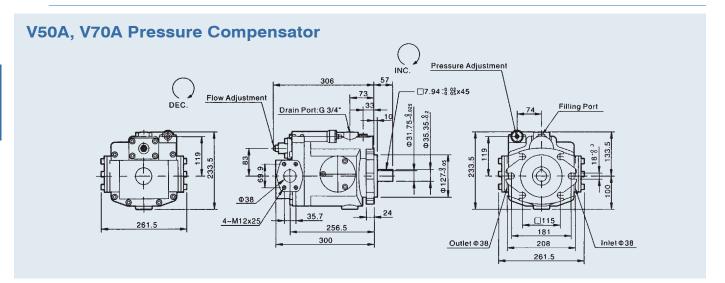
Dimensions

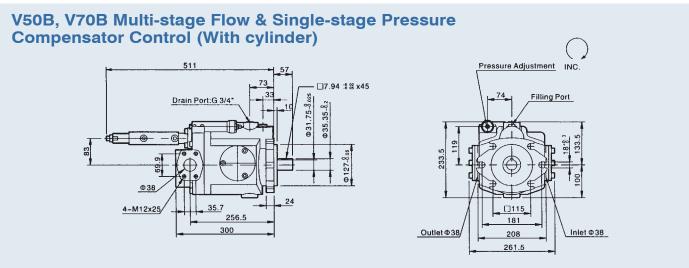


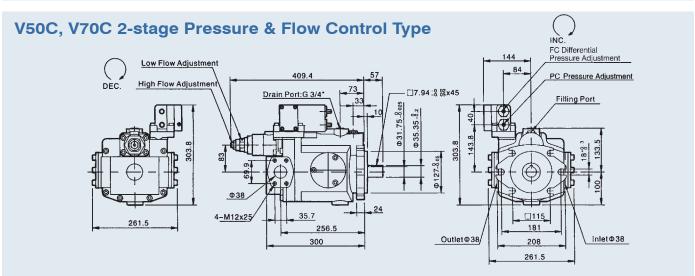

V38, V42 Prepared for Thru Drive (SAE AØ82.55)

Dimensions

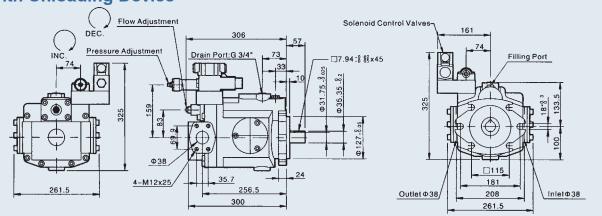


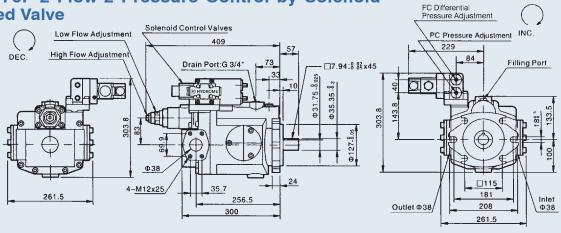



V38, V42 Splined Shaft Type

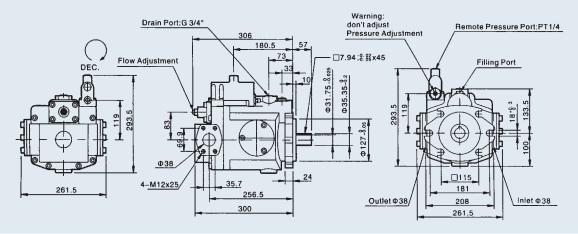


V38, V42 Hydraulic Flange

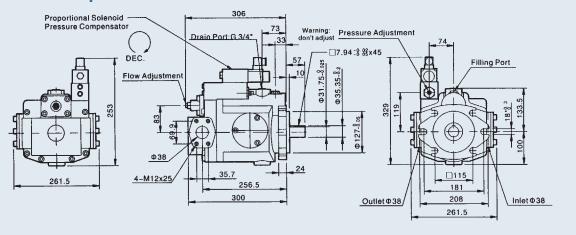




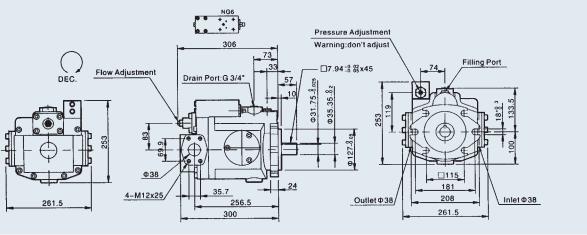
Dimensions


V50D, V70D Solenoid Controlled Pressure Compensating **Type with Unloading Device**

V50F, V70F 2 Flow-2 Pressure Control by Solenoid **Operated Valve** Solenoid Control Valves

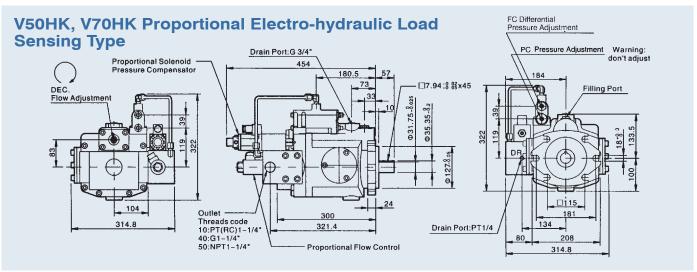


V50G, V70G Remoted Pressure Compensator Control

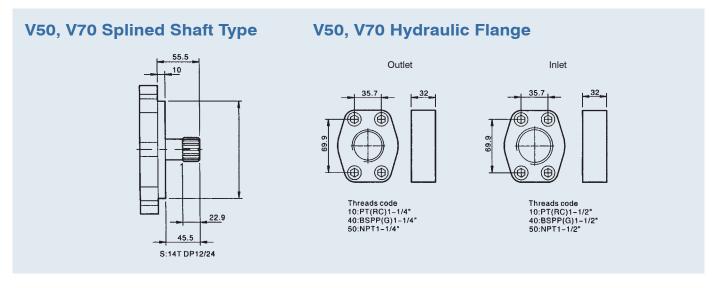


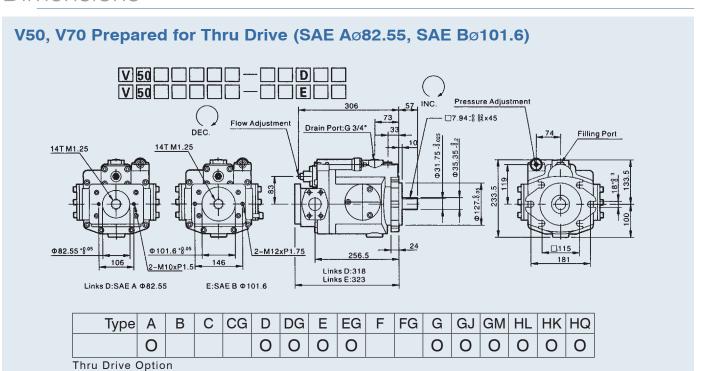
Dimensions

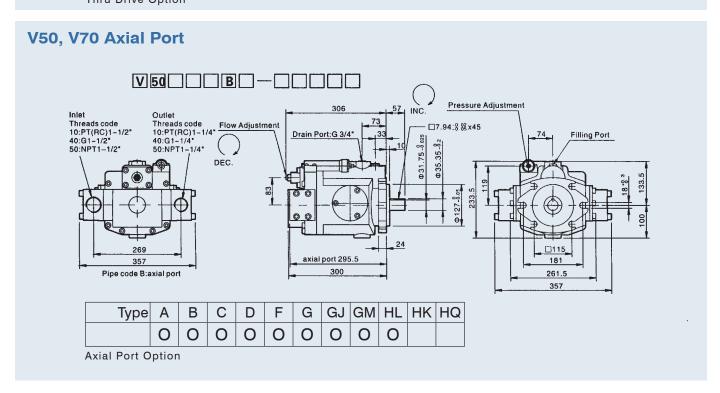
V50GJ, V70GJ Proportional Pressure with interface

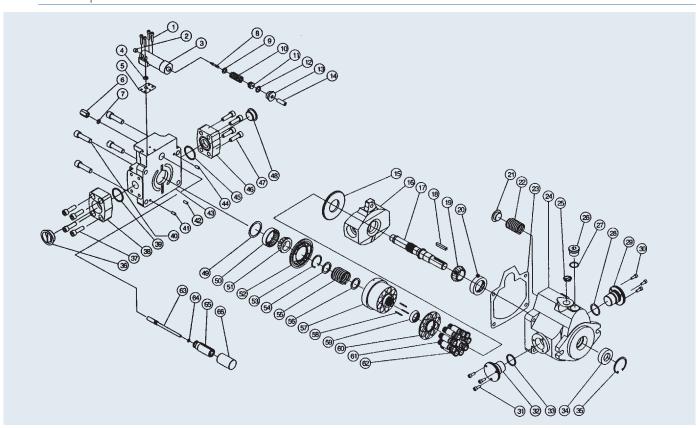


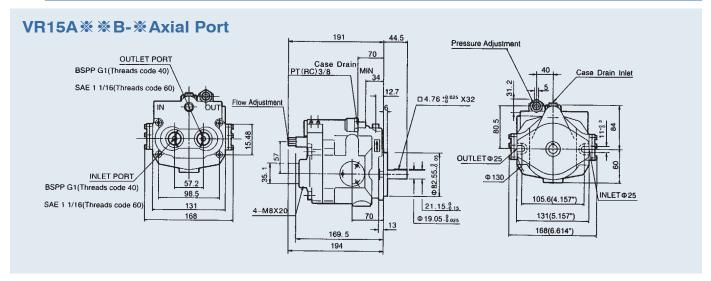
V50GM, V70GM Remote Interface (Not include valve)

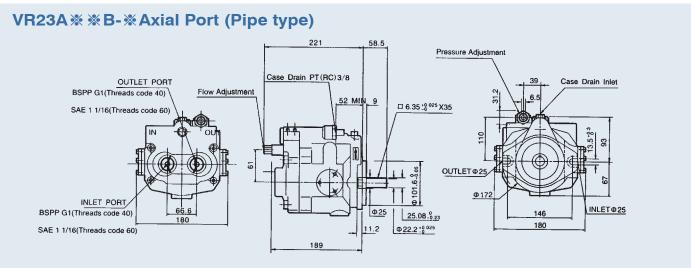


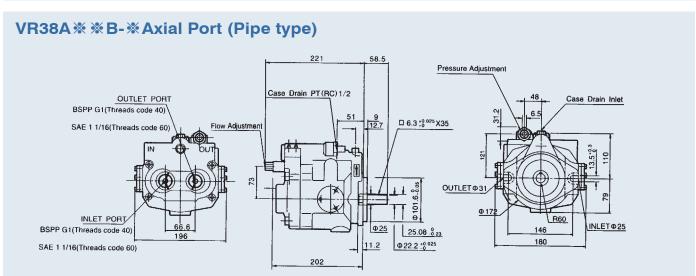

V50HL, V70HL Load-sensing Compensator FC Differential Pressure Adjustment Load sensing Port:PT1/4 PC Pressure Adjustment Drain Port: G 3/4" 306 Flow Adjustment □7.94%8€x45 Filling Port 293.5 □115 4-M12x25 261.5 181 256.5 Inlet Ф38 Outlet Φ38 261.5


Dimensions


V50HQ, V70HQ Load-Sensing Proportional Flow Control FC Differential Pressure Adjustment Drain Port:G 3/4" PC Pressure Adjustment Warning: don't adjust 180.5 □7.94 = 8 8 x 45 DEC Filling Port Φ35.35-8 322 119 24 □115 Outlet Threads code 10:PT(RC)1-1/4" 40:G1-1/4" 50:NPT1-1/4" 300 181 314.8 321.4 208 314.8

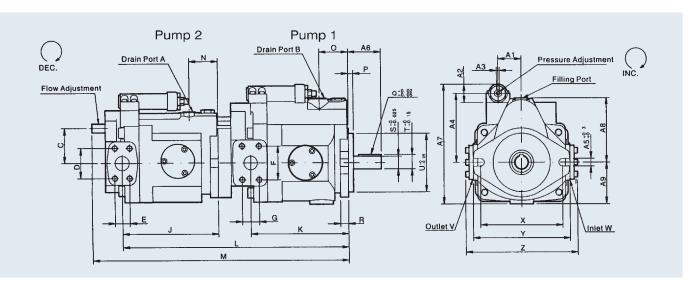



Decomposition Chart



List of parts

No. Description No. Description No. Description						Description	
No.	Description	No.	Description	No.	Description	NO.	Description
1	Bolt	18	Shaft Key	35	M snap ring	52	Valve plate
2	Port plug	19	Bearing of shaft	36	Plug	53	Snap ring
3	Pressure compensator	20	Bearing of shaft	37	Bolt	54	Washer cylinder block
4	O-ring	21	Servo spring washer	38	Flange	55	Retainer spring
5	Gasket	22	Servo spring	39	O-ring	56	Washer cylinder block
6	Lock nut	23	End cover seal	40	Bolt	57	Cylinder block
7	O-ring	24	Pump body	41	Roller	58	Roller
8	Control compensator shaft	25	Drain plug	42	Roller	59	Cylinder block holder
9	Spring washer	26	Filling screw	43	End cover	60	Slipper retainer
10	Control spring	27	O-ring	44	Roller	61	Pistons
11	O-ring washer	28	O-ring	45	O-ring	62	Piston head
12	O-ring	29	Swash shaft	46	Flange	63	Flow screw
13	Lock nut	30	Bolt	47	Bolt	64	O-ring
14	Screw	31	Bolt	48	Plug	65	Sleeve piston
15	Slipper plate	32	Swash shaft	49	Washer cylinder block	66	Servo piston sleeve
16	Swash	33	O-ring	50	Bearing of pump cover		
17	Shaft	34	Shaft seal	51	Bearing of pump cover		



V SERIES TANDEM AXIAL PISTON PUMP

Tandem pump (Multi-option for tandem pump)

Pump 1	V15(V18)	V23(V25)	V23(V25)	V38(V42)	V38(V42)	V38(V42)	V50(V70)	V50(V70)	V50(V70)
Pump 2	V15(V18)	V15(V18)	V23(V25)	V15(V18)	V23(V25)	V38(V42)	V15(V18)	V23(V25)	V38(V42)
Α	G 3/8"	G 1/2"	G 3/8"	G 3/8"	G 1/2"				
В	G 3/8"	G 3/8"	G 3/8"	G 1/2"	G 1/2"	G 1/2"	G 3/4"	G 3/4"	G 3/4"
С	57.45	57.45	61	57.45	61	73	57.45	61	73
D	35.1	35.1	52.4	35.1	52.4	58.7	35.1	52.4	58.7
E	35.1	35.1	26.2	35.1	26.2	30.2	35.1	26.2	30.2
F	35.1	52.4	52.4	58.7	58.7	58.7	69.9	69.9	69.9
G	35.1	26.2	26.2	30.2	30.2	30.2	35.7	35.7	35.7
Н	M8×20	M8×20	M10×16	M8×20	M10×16	M10×16	M8×20	M10×16	M10×16
I	M8×20	M10×16	M10×16	M10×16	M10×16	M10×16	M12×25	M12×25	M12×25
J	147	147	170	147	170	179	147	170	179
K	147	170	170	179	179	179	256.5	256.5	256.5
L	332	369	402	378	401	410	464	493	502
М	382	419	455	428	454	465	515	546	555
N	48	48	51	48	51	51	48	51	51
0	48	51	51	51	51	51	73	73	73
Р	6	9	9	9	9	9	10	10	10
Q	4.76×32	6.35×40	6.35×40	6.35×40	6.35×40	6.35×40	7.94×45	7.94×45	7.94×45
R	13	14	14	14.5	14.5	14.5	24	24	24
s	ø19.05	ø22.22	ø22.22	ø22.22	ø22.22	ø22.22	ø31.75	ø31.75	ø31.75
Т	21.15	25.08	25.08	25.08	25.08	25.08	35.35	35.35	35.35
U	ø82.55	ø101.6	ø101.6	ø101.6	ø101.6	ø101.6	ø127	ø127	ø127
V	ø25	ø25	ø25	ø31	ø31	ø31	ø38	ø38	ø38
w	ø25	ø25	ø25	ø31	ø31	ø31	ø38	ø38	ø38
X	106	146	146	146	146	146	181	181	181
Υ	131	146	146	160	160	160	208	208	208
Z	165	182	182	198.6	198.6	198.6	261.5	261.5	261.5
A1	44	39	39	39	39	39	74	74	74
A2	31.2	31.2	31.2	31.2	31.2	31.2	40	40	40
A3	5	5	5	5	5	5	8	8	8
A4	84	110	110	121	121	121	119	119	119
A5	11	13.5	13.5	13.5	13.5	13.5	18	18	18
A6	44.5	58.5	58.5	58.5	58.5	58.5	57	57	57
A7	160	193	193	210	210	210	233.5	233.5	233.5
A8	91.5	93	93	113.5	113.5	113.5	133.5	133.5	133.5
A9	60	68	68	72	72	72	100	100	100

49 invascus

AR SERIES AXIAL PISTON PUMP

AR Control Type (see page. 15,16,17)

01: Pressure Compensator

G: Remote Pressure Compensator

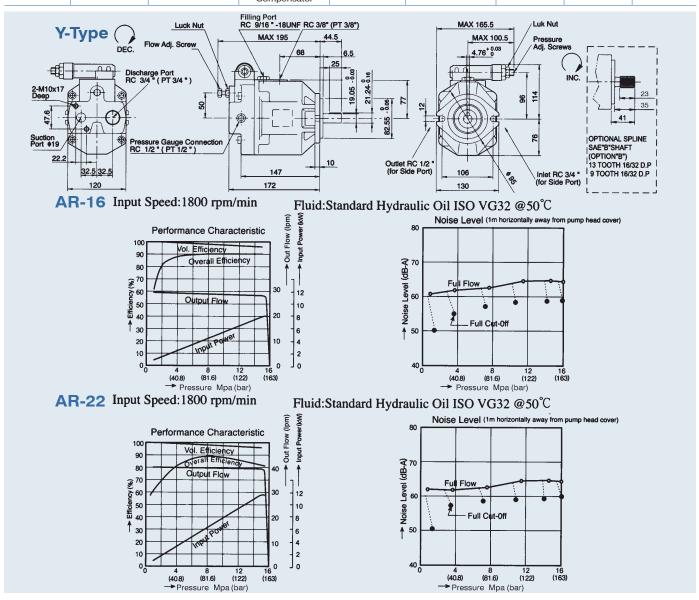
GJ: Layer Porportional Pressure Compensator

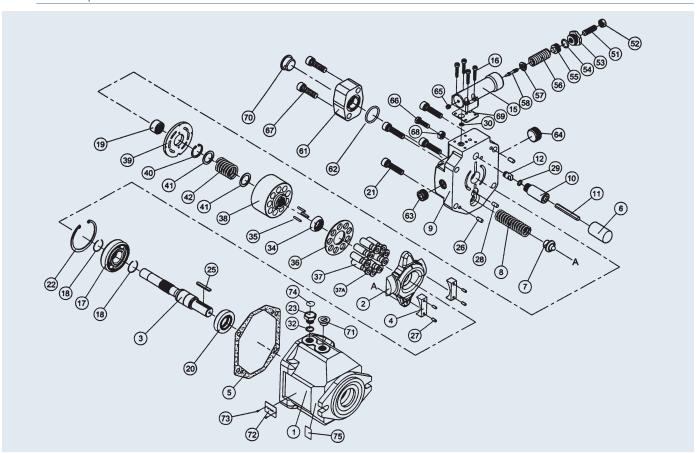
GR: Electrical Unloading

GB: Dual Pressure Control

GC: Dual Pressure+Electrical Unloading

GM: Remote Pressure Compensator allows a pilot valve


HL: Load-sensing Compensator


Ordering Codes

***Standard**

	F	R	01	С	S	K	10	Υ
Model	Mounting	Direction of Rotation	Control Type	Pres. Adj. Range bar (MPa)	Port Position	Shaft Extension	Threads Code	Design
AR16 (15.8cc/rev)	F: Flange Mtg.	Viewed from Shaft End * R: Clockwise (Standard) L: Counter	01: Pressure Compensator Type HL: Load Sensing Compensator	B:12~70 (1.2~7) C:12~210	None: Axial Port S: Side Port	*K: Keyed G: 16/32 DP-13T T: 16/32 DP-9T	*10: PT(RC) theard 40: BSPP(G) theard 50: NPT	X *Y
AR22 (22.2cc/rev)		Clockwise	G: Remote Pressure Compensator	(1.2~21)	O. Glac Fort	DI 01	theard	•

Decomposition Chart

List of parts

No.	Description	No.	Description	No.	Description	No.	Description
1	Pump body	18	C snap ring 1-1/2	36	Slipper retainer	58	Control compensator shaft
2	Swash	19	1715 bearing rear	37	Piston	61	Flange 506A (6")
3	Swash shaft	20	Shaft seal	37A	Head of piston	62	O-ring G30
4	Swash plate	21	Screw M10x40L	38	Cylinder block	63	Pipe plug 1/2
5	Body seal	22	R62 snap ring	39	Valve plate	64	Pipe plug 3/4
6	Servo piston sleeve	23	Plug, feeder	40	Snap ring for bore R28	65	NPT 1/16
7	Servo spring washer	25	Key	41	Washer cylinder block	66	Screw M8x35
8	Swash spring	26	Locator pin, body	42	Retainer spring	67	Screw M10x35
9	Pump body / end cover	27	Locator pin, cradle	51	Screw M10x30	68	Lock nut M8
10	Sleeve piston	28	Locator pin, ø6x12.8	52	Lock nut M10	69	Body seal
11	Flow bar	29	O-ring P8 70°	53	Control lock nut	70	Plastic plug 3/4
12	Seal	30	O-ring P7	54	O-ring P14 70°	71	Plastic plug 3/8
15	Valve	32	O-ring S11	55	Control washer	72-73	Name Plate
16	Screw M5x25L	34	Cylinder block holder	56	Control spring	74-75	Description label
17	6305 bearing front	35	Roller	57	Spring washer		

FEATURES

- New type of swash plate and large servo pistons with strong bias spring achieve fast response, reduce the noise due to active decompression of system at down stroke.
- Nine piston and new precompression technology (precompression filter volume) result in unbeaten low outlet flow pulsation.
- Rigid and FEM-optimized body design for lowest noise level.
- 4. Thru drive for 100% nominal torque.
- Pump combinations (tandem pumps) of same size and model and mounting interface for basically all metric or SAE mounting interfaces.

Continuous: 350bar Intermittent: 420bar

Quick Reference Data Chart

	Dianlessment		Pump Delivery (7 bar) 100 PSI							
Model	Displacement		1200 RPM		1500	1500 RPM		1800 RPM		
	cc/rev	In³/rev	LPM	U.S. GPM	LPM	U.S. GPM	LPM	U.S. GPM		
PV016	16	0.98	19.2	5.1	24	6.3	28.8	7.6		
PV020	20	1.2	24	6.3	30	7.9	36	9.5		
PV023	23	1.4	27.6	7.3	34.5	9.1	41.4	10.9		
PV032	32	19	38.4	10.1	48	12.7	57.6	15.2		
PV040	40	2.4	48	12.7	60	15.9	72	19		
PV046	46	2.8	55.2	14.6	69	18.2	82.8	21.9		
PV063	63	3.8	75.6	20	94.5	25	113.4	30		
PV071	71	4.3	85.8	22.7	107	28.3	128.7	34		
PV080	80	4.8	96	25.4	120	31.7	144	38		
PV092	92	5.6	110.4	29.2	138	36.5	165.6	43.8		
PV140	140	8.5	168	44.4	210	55.5	252.1	66.6		
PV180	180	11	216	57.1	270	71.3	324	85.6		
PV270	270	16.5	324	85.6	405	107	486	128.4		

Model	APPROX. Noise Levels Db(A) Full Flow and 1500 RPM			Input Horse Power, Max. Displacement & 345 bar (5000PSI)		Operating Speed		Weight (kg)			
Model	70 bar	207 bar	343 bar	1500 rpm	1800 rpm	Max.	Min.				
	(1 KPSI)	(3 KPSI)	(5 KPSI)	KW(hp)	KW(hp)	RPM	RPM	kg	lb		
PV016				15.5 (20.8)	18.5 (24.8)						
PV020	56	60	68	19.5 (26.1)	23.4 (31.4)	2750		19	41.8		
PV023				22.5 (30.2)	25.1 (33.6)						
PV032				31 (41.6)	35.1 (47.1)	2400		30	66		
PV040	59	62	69	39 (52.3)	46.5 (62.3)						
PV046				45 (60.3)	50.2 (67.3)						
PV063				61.5 (82.4)	70.1 (94)	2100	300				
PV071	00	00	66	70	74	70 (93.8)	80 (107.2)	2100		60	132
PV080	00	70	74	78 (104.6)	89.2 (119.6)	2000	1	60	132		
PV092				89.5 (120)	136.8 (183.4)	1900					
PV140	70	74	76	136 (182.3)	149.4 (200.3)	2200		90	198		
PV180	71	75	77	175 (235)	210 (282)	2200		90	198		
PV270	77	79	81	263 (353)	298 (400)	1800		172	378.4		

- 1. Installation outlet port top, the pipe have to less than 2 bar.
- 2. The use of max. pressure override 6 min, hydraulic oil clean that see General Installation Information.
- 3. Hydrome offer tandem pumps, and other pumps connection, the connection type use metric version and SAE version dimensions.

How to order

PV = 063 = GT = R = M = 16 = 7 = 8 = 9 = 10

Series	Axial piston pump variable displacement high pressure version
--------	---

2 Size and Displacement

Code	Displacement cc/rev (In³/rev)
016	16 (0.98)
020	20 (1.2)
023	23 (1.4)
032	32 (1.9)
040	40 (2.4)

Code	Displacement cc/rev (In³/rev)
046	46 (2.8)
063	63 (3.8)
071	71 (4.3)
080	80 (4.8)
092	92 (5.6)

Code	Displacement cc/rev (In³/rev)
140	140 (8.5)
180	180 (10.9)
270	270 (16.5)

Control Types

HK HQ

F۷

FR

FG

PH_

	Code	Compensator
*	Standard T	ype Pressure Compensator
	A2	10~140 bar
	A3	40~210 bar
	A4	70~350 bar
	Remote Ty	ре
*	GT	Remote pressure compensator
*	GM	Remote pressure compensator allows a pilot valve
	GA	Remote pressure compensator allows a pilot valve (valve included)
	GJ	Layer proportional pressure compensator (valve included)
	Electrical L	Jnloading Type
	GR	Electrical unloading
	GB	Dual pressure control
	GC	Dual pressure+electrical unloading
	Load-sens	ing Type
*	HL	Load-sensing type
	HM	Load-sensing type
	HJ	2-valve load-sensing type (valve included)
	HA	2-valve load-sensing type

Code	Horse	PV016~	PV032~	PV063~	PV140	PV180	PV270
Code	power	PV023	PV046	PV092			
Α	3 KW	•					
В	4 KW	•					
С	5.5 KW	•	•				
D	7.5 KW	•	•				
E	11 KW	•	•	•			
F	15 KW		•	•			
G	18.5 KW		•	•	•		
Н	22 KW		•	•	•	•	
I	30 KW			•	•	•	
J	37 KW			•	•	•	
K	45 KW			•	•	•	•
L	55 KW				•	•	
М	75 KW					•	•
N	90 KW					•	•
0	110 KW						•
Р	132 KW						

PM _

Horse Power Type

control

Proportionable displacement Type

PA_ Horse power compensator Horse power compensator, pilot flow internal pressure pilot valve (valve included) PG. Horse power compensator, pilot flow internal Horse power compensator, load-sensing $\mathsf{PL}\square$ compensator Horse power compensator, pilot flow external for

Proportional electro-hydraulic load sensing type

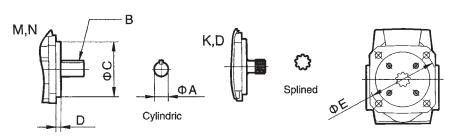
Proportionable displacement control with pressure Proportionable displacement control with pressure

Load-sensing & Proportional flow control

Proportionable displacement control

Rotation (Viewed from shaft end)

	e Rotation	
※ R	clockwise	2
L	counterclock	wise 🛴


load-sensing

How to order

5	Mounting								
	Code	Mounting			Code	Mounting			
*	M (standard)	Metric	ISO 3019/2 Cylindric, key		N	lask	ISO 3019/1 Cylindric, key		
	K	Metric	ISO 3019/2 Splined, DIN5480		D	Inch	ISO 3019/1 Splined, SAE		

	01-		Madal	Sh	aft	Flar	Flange		
	Code		Model	Α	В	С	D	Е	
			PV016~PV023	ø25	8×7×40	ø100	9	ø125	
			PV032~PV046	ø32	10×8×56	ø125	9	ø160	
*	M	Metric	PV063~PV092	ø40	12×8×80	ø160	9	ø200	
			PV140~PV180	PV140~PV180 ø50		ø160	9	ø200	
			PV270	ø65	12×8×80	ø200	9	ø250	
			PV016~PV023	W25×1.	5×15×8f DIN5480	ø100	9	ø125	
			PV032~PV046	W32×1.	5×20×8f DIN5480	ø125	9	ø160	
	K	Metric	PV063~PV092	W40×1.	5×25×8f DIN5480	ø160	9	ø200	
			PV140~PV180	W50×2	×24×9g DIN5480	ø160	9	ø200	
			PV270	W60×2	×28×9g DIN5480	ø200	9	ø250	
			PV016~PV023	ø1"	0.25"×0.25"×1.6"	ø4"	3/8"	ø5"	
			PV032~PV046	ø1-1/4"	5/16"×5/16"×2.2"	ø5"	1/2"	ø6.37"	
	N	Inch	PV063~PV092	ø1-3/4"	7/16"×7/16"×3.15"	ø6"	1/2"	ø9"	
			PV140~PV180	ø2"	1/2"×1/2"×2.95"	ø6"	1/2"	ø9"	
			PV270	ø2"	1/2"×1/2"×2.95"	ø6.5"	5/8"	ø12.5"	
			PV016~PV023	Splined 15T	16/32DP ANSI B92.1	ø4"	3/8"	ø5"	
			PV032~PV046	Splined 14T	12/24DP ANSI B92.1	ø5"	1/2"	ø6.37"	
	D	Inch	PV063~PV092	Splined 13T	8/16DP ANSI B92.1	ø6"	1/2"	ø9"	
			PV140~PV180	Splined 15T	8/16DP ANSI B92.1	ø6"	1/2"	ø9"	
			PV270	Splined 15T	8/16DP ANSI B92.1	ø6.5"	5/8"	ø12.5"	

	Threads	
	Code	Threads
*	1 (standard)	BSPP (G)
	2	PT (RC)
	3	UNF
	4	NPT
	7	ISO 6149

6

How to order

		<u> </u>	- 4	+ 0) (, ,	0	9 10									
7	Thru	drive &	2nd p	ump													
	Code	е	Thr	u drive 8	& 2nd p	oump											
*	A (sta	andard)	Sing	gle pum	p	-											
*	В	, ,		pared fo		drive											
	With	adaptor															
	С	- 1		<u> </u>		AA. ø2"	(ø50.8mm)			Н		7		Pump			
	D		-				1" (ø82.55n	nm)				1\				a	<u> </u>
	E		١.				101.6mm)	,				1\		TY L	<u>_</u>	*4	
	F		- In	ıch			127mm)				Δ				117		OC OC
	G						152.4mm)				i						
	Н		1		SAE	E, ø6.5"	ø165.1mn	1)			+		è II] [(
	T					c, ø63		<u>, </u>				1					
	J				Metri	c, ø80					u		7			70	F G
	K		٠.,		Metri	c, ø100				Coupl	ling -		Ι				'
	L		IVIE	etric	Metri	c, ø125					-		/			-	D_
	M				Metri	c, ø160					А	dapter -				-	F
	N				Metri	c, ø200											,
	Othe	r pump a	are ac	ceptable	e order												
Code			Mod	del			žΑ	øС		D		E		F	G	1	Н
C		CVE VV			١							-	2 0511 /			OT 20/40	
				50.8mm)		ø2" (ø50							,	32.55mm)	5/16"-18	9T 20/40	
D				(ø82.55r			(ø82.55)						_	(106.3mm)	3/8"-16	9T 16/32	
Е	Inch		_ `	01.6mm)		ø4" (ø10				6" (89.8mı		1/2"-13	-	146.05mm)	1/2"-13		2 DP, 15T 16/32 DP
F		SAE C,				ø5" (ø12				8" (114.5n		1/2"-13	_	(180.98mm)	5/8"-11	_	4 DP, 15T 16/32 DP
G				52.4mm)		ø6" (ø1				4" (161.6n		5/8"-11	9" (228	3.6mm)	5/8"-11		DP, 15T 8/16 DP
Н		_			ø6.5" (ø	165.1)		8.83	9" (224.5n	nm)	3/4"-10				15T 8/16	DP	
<u> </u>		Metric, g	,		ø63		ø85				M8	100		M8			
J		Metric, Ø				ø180		ø103				M8	109		M10		
K	Metric	Metric, ø				ø100		ø125				M10	150		M12	_	5×15×8f
L	Wiotilo	Metric, Ø	125			ø125		ø160				M12	180		M16	W32×1.	5×20×8f
М		Metric, Ø	160			ø160		ø200				M16	224		M20	W40×1.5	$\times 25 \times 8f$, W50 $\times 2 \times 24 \times 9g$
N		Metric, Ø	200			ø200		ø250			M20				W50×2>	<24×9g	
Coupling	9						Couplin	9						Coupling			
Code	pump		Н	1			Code	pump)	Н				Code	pump	Н	
A-D1		_	D1	9T 20/			C-D5			D5	_	Γ 12/24 DP		D-W2	PV140~	W2	W32×1.5×20×8f
A-D2	PV01	n~ ⊢	D2	9T 16/			C-D6			D6	_	Г 8/16 DP		D-W3	PV180	W3	W40×1.5×25×8f
A-D3	PV02	ર ⊢	D3	_	32 DP		C-D7	PV06	3~	D7	_	Г 8/16 DP	01	D-W4		W4	W50×2×24×9g
A-D4 A-W1	_	_	D4 W1		32 DP	of	C-W1 C-W2	PV092	2	W1 W2		5×1.5×15		E-D2	-	D2 D3	9T 16/32 DP
B-D2			D2	9T 16/3	1.5×15	XOI	C-W3			W3	_	2×1.5×20 0×1.5×25		E-D3 E-D4	-	D3	13T 16/32 DP 15T 16/32 DP
B-D3	_	_	D3		32 DF 3/32 DP		C-W4			W4	_	0×1.5×25		E-D5	-	D5	14T 12/24 DP
B-D4	PV03		D4		3/32 DP		D-D2			D2		16/32 DP	<u> </u>	E-D6	+	D6	13T 8/16 DP
B-D5	PV04	-	D5		2/24 DP		D-D3			D3	_	Γ 16/32 DP		E-D7	PV270	D7	15T 8/16 DP
B-W1		_	W1		1.5×15	×8f	D-D4		_	D4		Г 16/32 DP		E-W1	1	W1	W25×1.5×15×8f
B-W2		_	W2		1.5×20		D-D5	PV140		D5	_	Γ 12/24 DP		E-W2	1	W2	W32×1.5×20×8f
C-D2	D/ /OC	,	D2	9T 16/			D-D6	PV180	U	D6	_	Γ 8/16 DP		E-W3	1	W3	W40×1.5×25×8f
C-D3	PV06		D3	13T 16	32 DP		D-D7			D7	15	Γ8/16 DP		E-W4		W4	W50×2×24×9g
C-D4	F V U 9	۷	D4	15T 16	32 DP		D-W1			W1	W2	5×1.5×15	×8f	E-W5		W5	W60×2×28×9g
8	Volta	age															
	Code	е	V	oltage			Co	de		Voltage				Code	Volt	tage	
	0	-		one			С			AC200\		60Hz)	_	F		24V	
	Α			C100V (50-60H	łz)	D			AC220\	•		-				
	В			C110V (E			DC12V		,	-				
9	Seal	s											_				
	Cod		0	eals			C.	ode		Seals							
*	N	-	_	BR			E	,ue		Ethylen	-nron	vlen	-				
78.	V		_	PM						Luiyien	-biob	yı c ıı	-				
				□ IVI													
10	Desi	gn No.	Not	require f	or orde	er											
	2001	J			5140												

Compensator

Standard Type

A: Standard pressure compensator remote type

GT: Remote pressure compensator

GM: Remote pressure compensator allows a pilot valve

GA: Remote pressure compensator allows a pilot valve (valve included)

GJ: Layer proportional pressure compensator (valve included)

Electrical Unloading Type

GR: Electrical unloading

GB: 2 pressure electrical selection **GC:** 2 pressure + electrical unloading

Load-sensing Type

HL: Load-sensing compensator

HM: Load-sensing compensator

HJ: 2-vavle load-sensing compensator

HA: 2-vavle load-sensing compensator (valve included)

HK: Proportional electro-hydraulic load sensing type

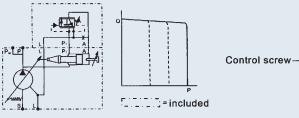
HQ: Load-sensing & Proportional flow control

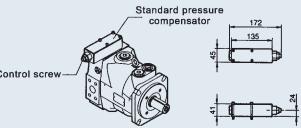
Horse Power Type

PA: Horse power compensator

PM: Horse power compensator, pilot flow internal pressure pilot valve included

PG: Horse power compensator, pilot flow internal

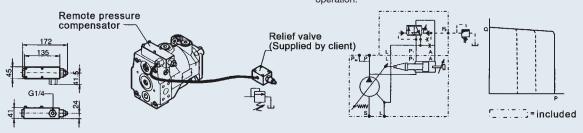

PL: Horse power compensator, Load-sensing compensator


PH: Horse power compensator, pilot flow external for load-sensing

A: Standard Pressure compensator

The standard pressure compensator adjusts the pump displacement according to the actual need of the system in order to keep the pressure constant. As long as the system pressure at outlet port P is lower than the set pressure (set as spring preload of the compensator spring) the working port A of the compensator valve is connected to the case drain and the piston area is unloaded. Bias spring and system pressure on the annulus area keep the pump at full displacement.

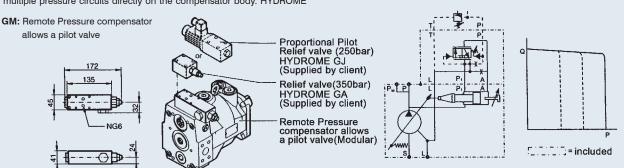
When the system pressure reaches the set pressure the compensator valve spool connects port P1 to A and builds up a pressure at the servo piston resulting in a down stroking of the pump. The displacement of the pump is controlled in order to match the flow requirement of the system.



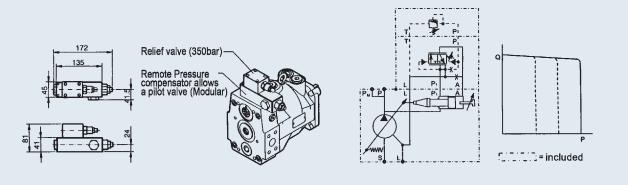
GT: Remote Pressure compensator

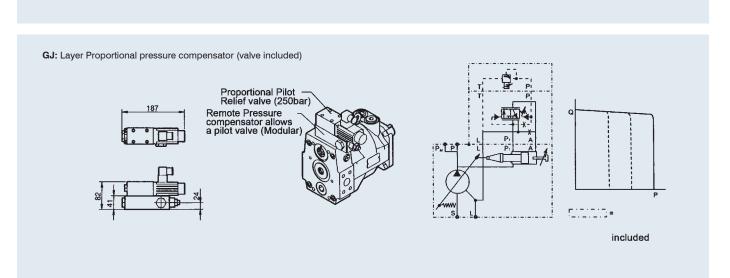
While at the standard pressure compensator the pressure is set directly at the compensator spring, the setting of the remote pressure compensator can be achieved by any suitable pilot pressure valve connected to pilot port PP. The pilot flow supply is internal through the valve spool.

The pilot flow is 1-1.5 lpm. The pilot valve can be installed remote from the pump in some distance. That allows pressure setting e.g. from the control panel of the machine. The remote pressure compensator and is able to solve instability problems that may occur with a standard pressure compensator in critical applications. The pressure pilot valve can also be electronically controlled (proportional pressure valve) or combined with a directional control valve for low pressure standby operation.

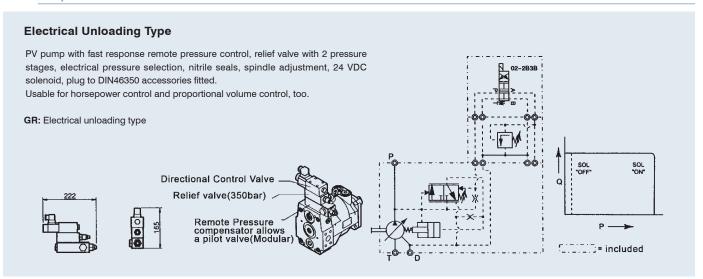


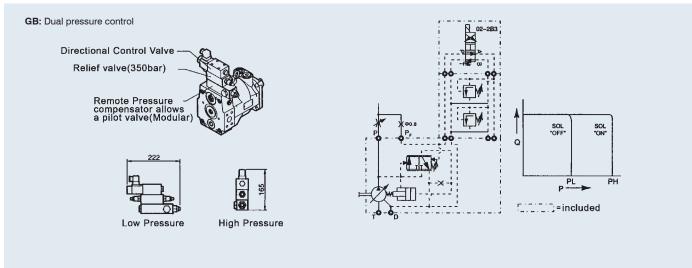
Compensator

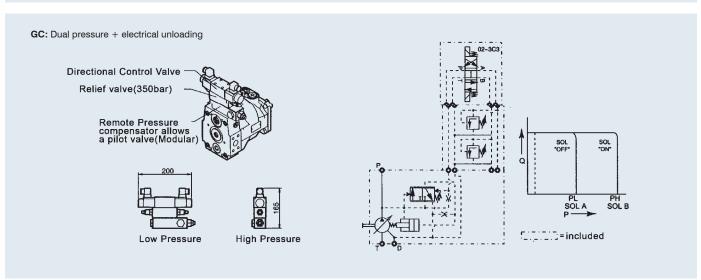

Remote Pressure compensator allows pilot valve


Version GM of remote pressure compensator provides on its top side an interface NG6, DIN24340 (CETOP 03 at RP35H, NFPA D03). This interface allows a direct mounting of a pilot valve. Beside manual or electro hydraulic operated valves it is also possible to mount complete multiple pressure circuits directly on the compensator body. HYDROME

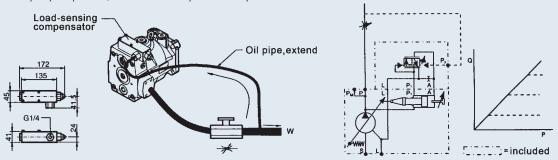
offers a variety of these compensator accessories ready to install. All remote pressure compensator have a factory setting of 15 bar differential pressure. With this setting, the controlled pressure at the pump outlet is higher than the pressure controlled by the pilot valve.




GA: Remote Pressure compensator allows a pilot valve (valve included)



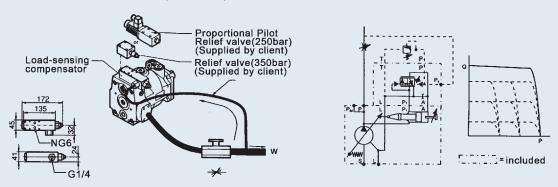
Compensator


Compensator

Load-sensing Type

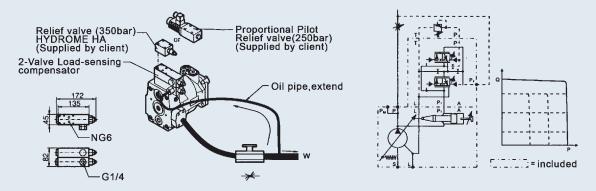
HL: Load-sensing compensator

The load-sensing compensator has an external pilot pressure supply. Factory setting for the differential pressure is 10 bar. The input signal to the compensator is the differential pressure at a main stream resistor. A load-sensing compensator represents mainly a flow control for the pump output flow, because the compensator keeps

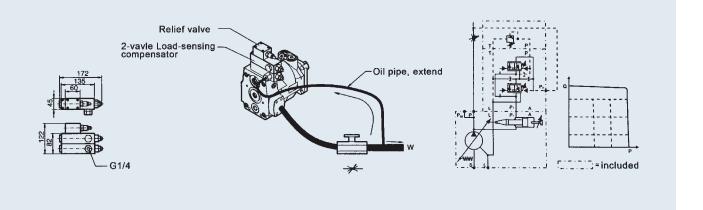

the pressure drop at the main stream resistor constant. A variable input speed or a varying load (pressure) has consequently no influence on the output flow of the pump and speed of the actuator. By adding a pilot orifice (\emptyset 0.8mm) and compensation can be added to the flow control function. See the circuit diagram below, left.

HM: Load-sensing compensator

Shown above is load sensing compensator code HM with an NG6 interface on top of the control valve. That allows direct mounting of a pilot valve for pressure compensation. This version includes the pilot orifice. Due to the interaction of flow and pressure compensation


this package has not the "ideal" control characteristic. The deviation is caused by the pilot valves characteristic.

HJ: 2-valve load-sensing compensator

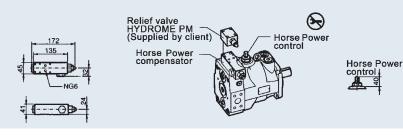

If a more accurate pressure compensation is required, the 2-valve load-sensing compensator code HJ can be used. The circuit diagram of this version is shown left. Here the interaction of the two control

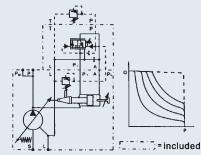
functions is avoided by using two separate control valves for flow and pressure compensation. The 2-valve compensator is equipped with an interface NG6 on the compensators top side.

Compensator

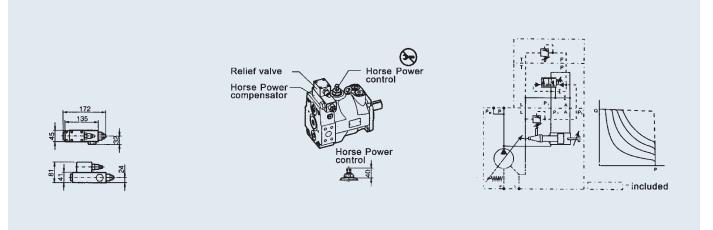
HA: 2-valve load-sensing compensator (valve included)

The hydraulic-mechanical horse power compensator consists of a modified remote pressure compensator (Code PG* ${}^{\circ}$ PM*) or of a modified load-sensing compensator (Code PH*) and a pilot valve. This pilot valve is integrated into the pump and is adjusted by a cam sleeve. The cam sleeve has a contour that is designed and machined for the individual displacement and the nominal horse power setting.

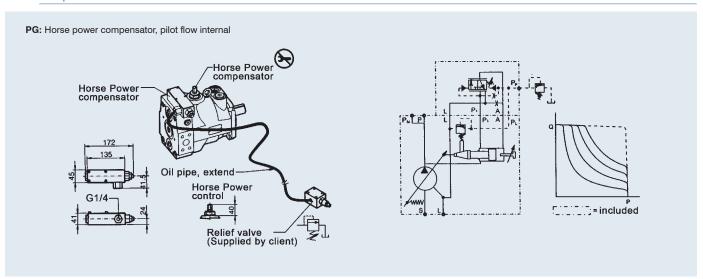

At a large displacement the opening pressure (given by the cam sleeve diameter) is lower than at small displacements. This makes the pump compensate along a constant horse power (torque) curve.

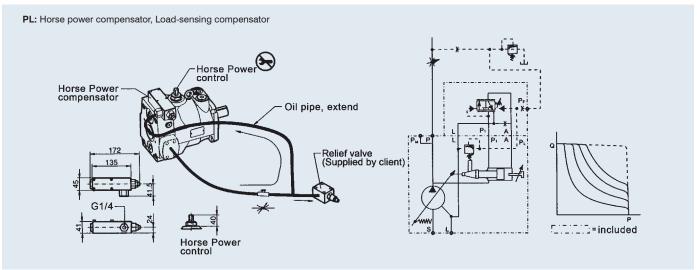

For all nominal powers of standard electrical motors HYDROME offers a dedicated cam sleeve. The exchange of this cam sleeve (e. g. : to change horse power setting) can easily be done without disassembly of the pump.

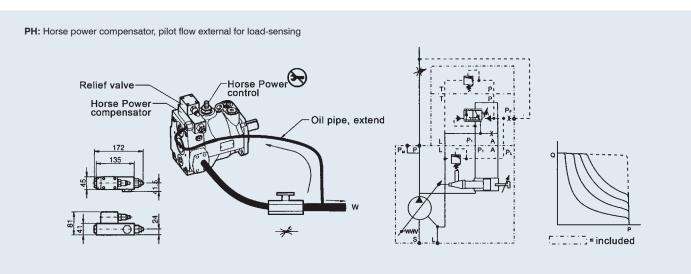
On top of that an adjustment of the horse power setting can be done within certain limits by adjustment the preload of the pilot control cartridge spring.


That allows an adjustment of a constant horse power setting for other than the nominal speeds (1500min-1) or for other horse power.

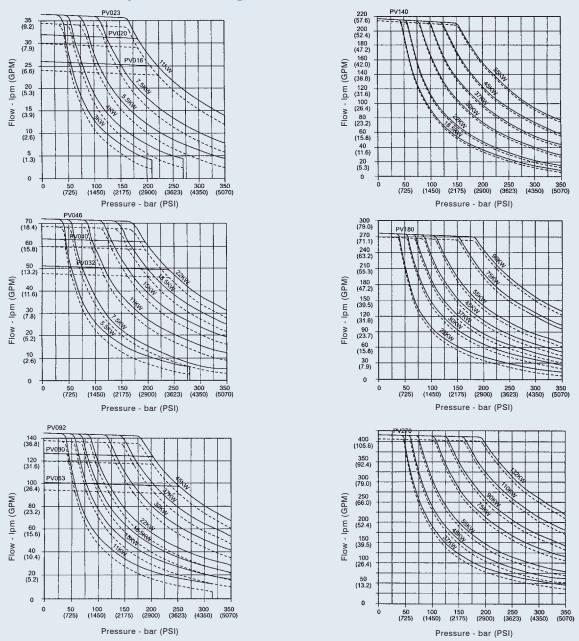
PA: Horse power compensator






PM: Horse power compensator, pilot flow internal pressure pilot valve included

Compensator

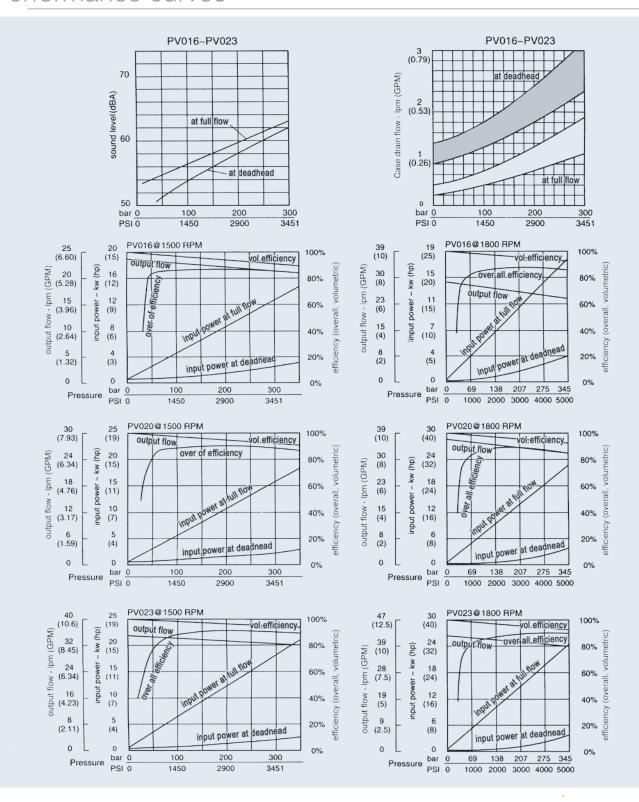


Performance curves

Horse Power Compensator, diagrams

The diagrams shown are only valid for the following working conditions: $speed: n=1500(-\ -) and\ 1800(--) rev/min$ $temperature: t=50^{\circ}C$ $fluid: mineral\ oil\ HLP,\ ISO\ VG46$ $viscosity: v=46mm/s\ at\ 40^{\circ}C$

Efficiency And Case Drain Flows PV016-PV023


The efficiency and power graphs are measured at an input speed of n = 1500 min⁻¹, a temperature of 40°C and a fluid viscosity of 46 mm²/s. Case drain flow and compensator control flow leave via the drain port of the pump. To the valves shown are to be added 1 to 1.2 lpm, if at pilot operated compensator (code G*, H* horse power compensator and P/Q-control) the control flow of the pressure pilot valve also goes

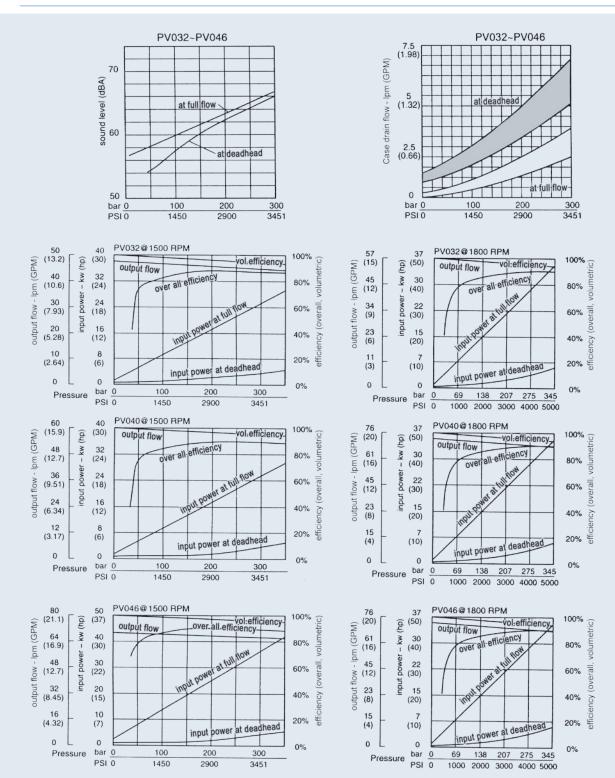
through the pump.

Please note: The valves shown below are only valid for static operation. Under dynamic conditions and at rapid compensator of the pump the volume displaced by the servo piston also leaves the case drain port.

This dynamic control flow can reach up to 40 lpm.

Therefore the case drain line is to lead to the reservoir at full size and without restrictions at short and direct as possible.

Efficiency And Case Drain Flows PV032-PV046


The efficiency and power graphs are measured at an input speed of n = 1500 min⁻¹, a temperature of 40°C and a fluid viscosity of 46 mm²/s. Case drain flow and compensator control flow leave via the drain port of the pump. To the valves shown are to be added 1 to 1.2 lpm, if at pilot operated compensator (code G*,H* horse power compensator and P/Q-control) the control flow of the pressure pilot valve also goes

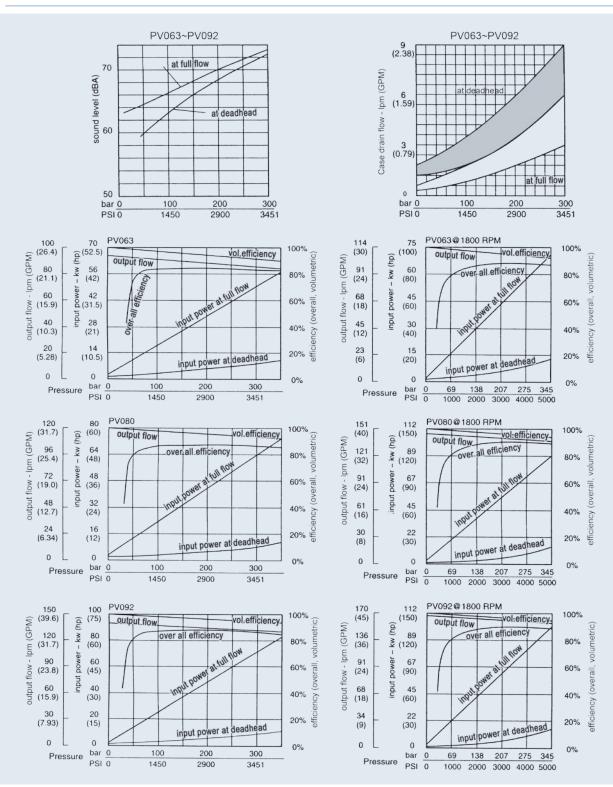
through the pump.

Please note: The valves shown below are only valid for static operation. Under dynamic conditions and at rapid compensator of the pump the volume displaced by the servo piston also leaves the case drain port.

This dynamic control flow can reach up to 60 lpm.

Therefore the case drain line is to lead to the reservoir at full size and without restrictions at short and direct as possible.

Efficiency And Case Drain Flows PV063, PV080, PV092


The efficiency and power graphs are measured at an input speed of n = 1500 min^{-1} , a temperature of 40°C and a fluid viscosity of $46 \text{ mm}^{-2}/\text{s}$. Case drain flow and compensator control flow leave via the drain port of the pump. To the valves shown are to be added 1 to 1.2 lpm, if at pilot operated compensator (code G^* , H^* horse power compensator and P/Q-control) the control flow of the pressure pilot valve also goes

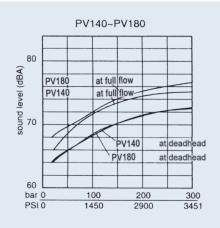
through the pump.

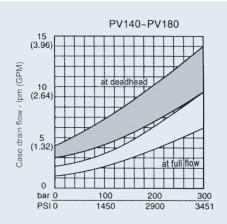
Please note: The valves shown below are only valid for static operation. Under dynamic conditions and at rapid compensator of the pump the volume displaced by the servo piston also leaves the case drain port.

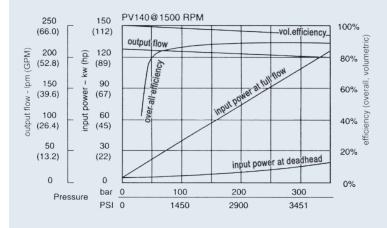
This dynamic control flow can reach up to 80 lpm.

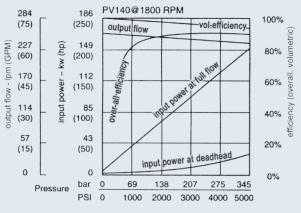
Therefore the case drain line is to lead to the reservoir at full size and without restrictions at short and direct as possible.

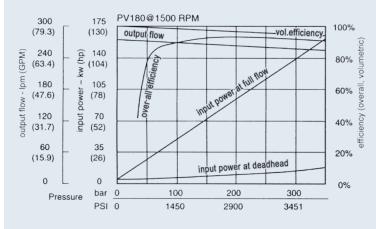
Efficiency And Case Drain Flows PV140. PV180

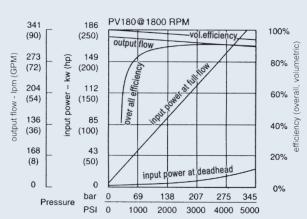

The efficiency and power graphs are measured at an input speed of n = 1500 min⁻¹, a temperature of 40°C and a fluid viscosity of 46 mm²/s. Case drain flow and compensator control flow leave via the drain port of the pump. To the valves shown are to be added 1 to 1.2 lpm, if at pilot operated compensator (code G*, H* horse power compensator and P/Q-control) the control flow of the pressure pilot valve also goes


through the pump.

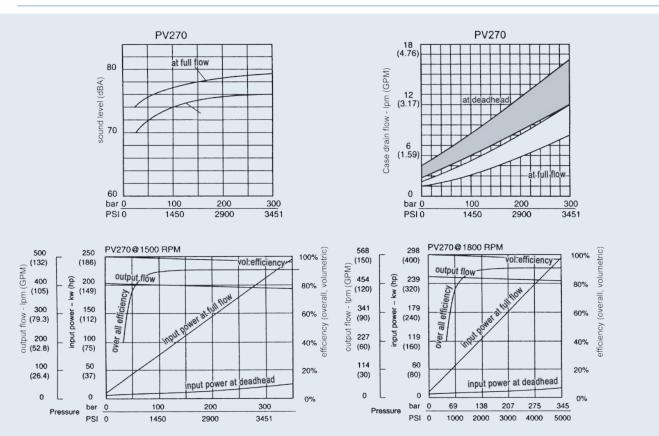

Please note: The valves shown below are only valid for static operation. Under dynamic conditions and at rapid compensator of the pump the volume displaced by the servo piston also leaves the case drain port.

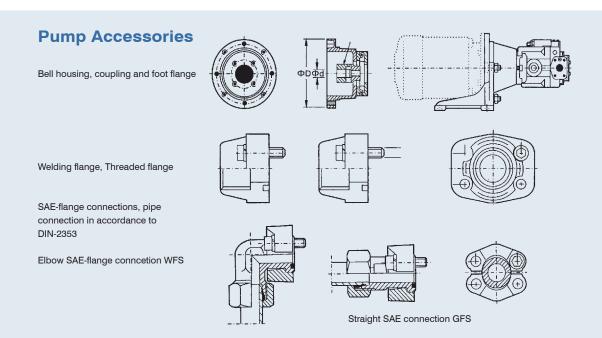

This dynamic control flow can reach up to 120 lpm.

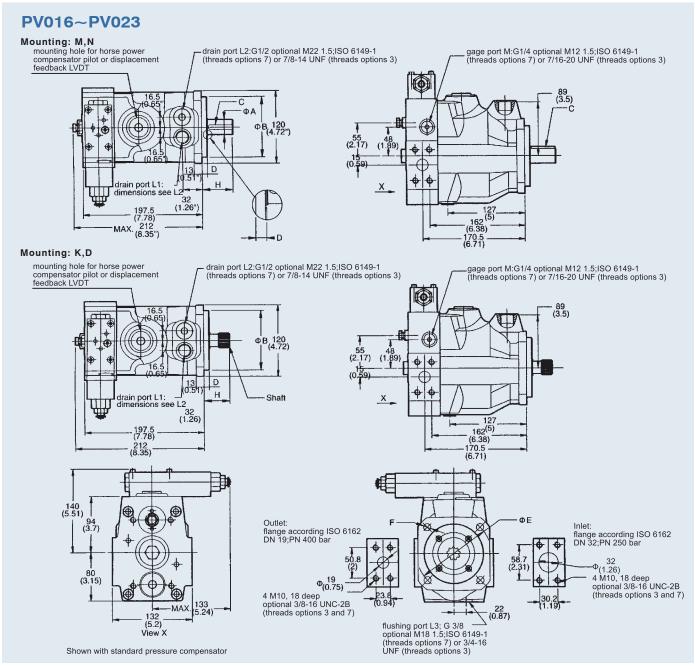

Therefore the case drain line is to lead to the reservoir at full size and without restrictions at short and direct as possible.



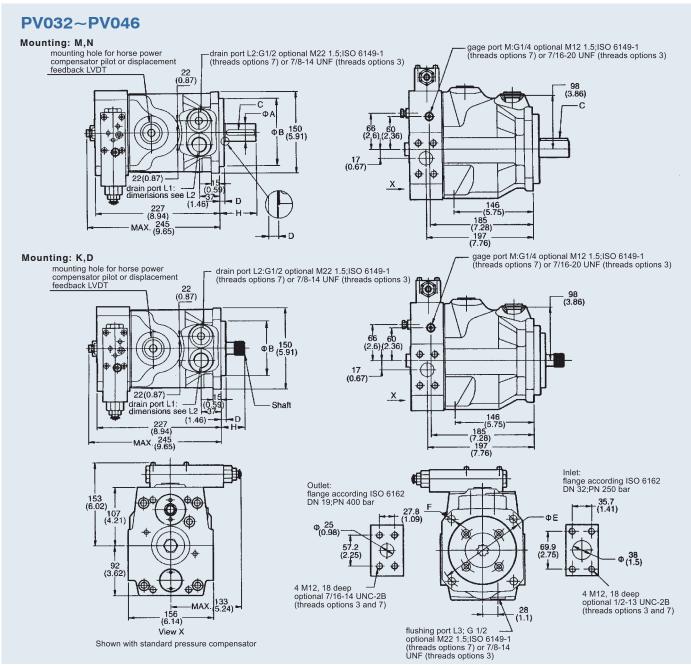
Efficiency And Case Drain Flows PV270

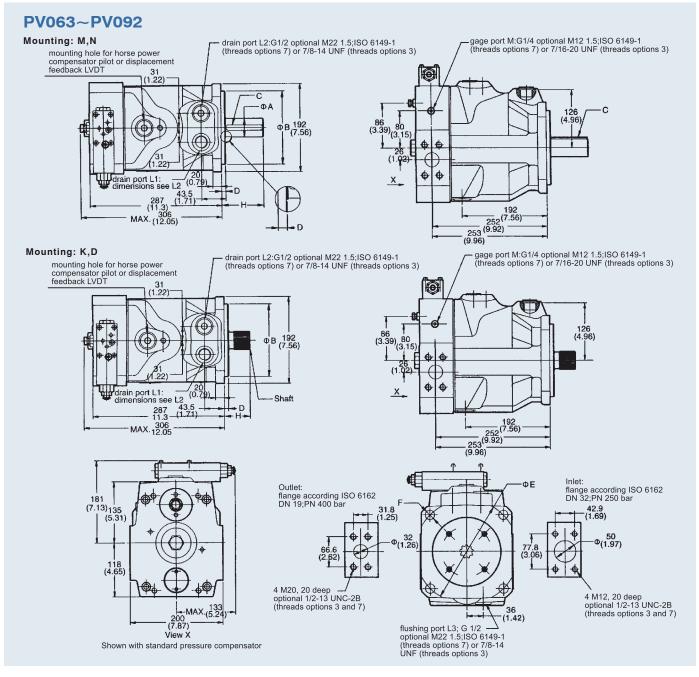

The efficiency and power graphs are measured at an input speed of n $=1500\ min^{-1}$, a temperature of $40^{\circ}C$ and a fluid viscosity of $46\ mm^{2}/s$. Case drain flow and compensator control flow leave via the drain port of the pump. To the valves shown are to be added 1 to 1.2 lpm, if at pilot operated compensator (code G*, H* horse power compensator and P/Q-control) the control flow of the pressure pilot valve also goes

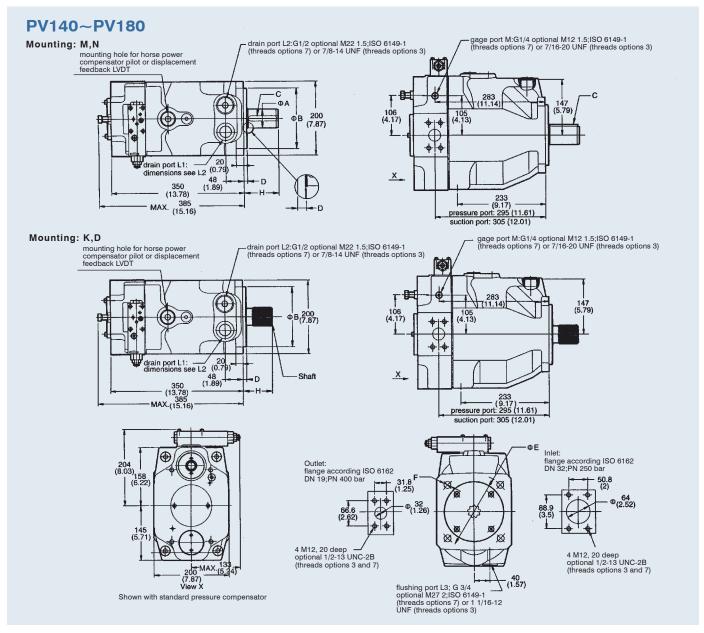

through the pump.

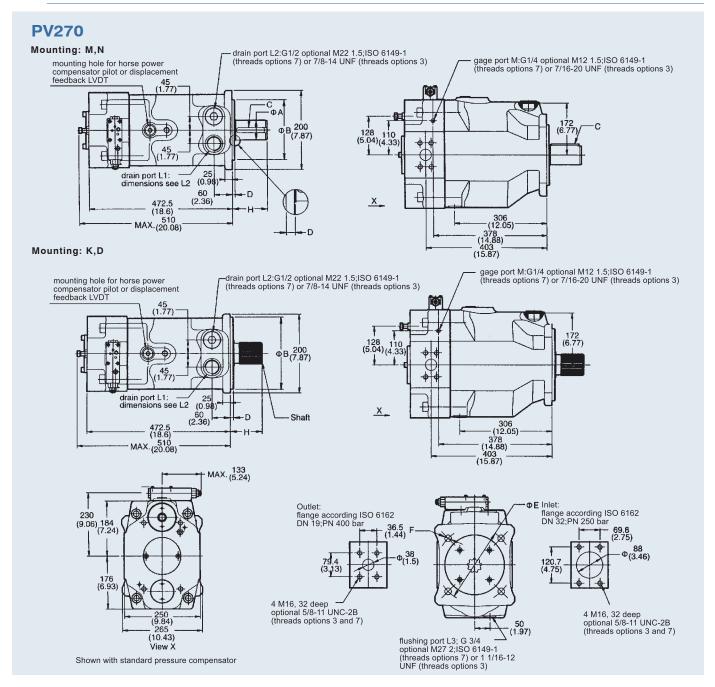

Please note: The valves shown below are only valid for static operation. Under dynamic conditions and at rapid compensator of the pump the volume displaced by the servo piston also leaves the case drain port.

This dynamic control flow can reach up to 120 lpm.


Therefore the case drain line is to lead to the reservoir at full size and without restrictions at short and direct as possible.




	PV016~PV023 Dimensions									
	Mounti	ng	øΑ	ø B	С	D	øΕ	F	Н	
M (standard)	dard) Metric ISO 3019/2 Splined, DIN 5480		ø25	ø100 h8	8x7x40	9	125	12	52	
N	Inch ISO3019/2 Ø25.4 (1")		ø25.4 (1")	ø101.6 (4")	6.35x6.35x40 (1/4")	9.4 (0.37")	127 (5")	12 (0.47")	50 (1.97")	
	Mounti	ng	Shaft		øΒ	D	øΕ	F	Н	
K (standard)	K (standard) Metric ISO 3019/2 Splined W25x1.5x15x8f Cylindric, key DIN 5480			ø100 h8	9	125	12	43		
D	Inch	ISO 3019/1 Splined, SAE	Splined 15T 16/32 DP, flat root, side fit ANSI B92.1		ø101.6 (4")	9.4 (0.37")	127 (5")	12 (0.47")	46 (1.81")	


	PV032~PV046 Dimensions									
	Mountir	ng	ØΑ	øΒ	С	D	øΕ	F	Н	
M (standard)	Metric	ISO 3019/2 Splined, DIN 5480	ø32	ø125 h8	10x8x56	9	160	14	68	
N	N Inch ISO 3019/2 Cylindric, key		ø31.75 (1.25") ø127 (5")		7.94x7.94x56 (5/16")	12.7 (0.5")	161.93 (6.38")	14 (0.55")	68 (2.68")	
	Mountir	ng	Sha	ft	øΒ	D	øΕ	F	Н	
K (standard)	Metric	ISO 3019/2 Cylindric, key	Splined W32: DIN 54		ø125 h8	9	160	14	47	
D	Inch	ISO 3019/1 Splined, SAE		Splined 14T 12/24 DP, flat root, side fit ANSI B92.1		12.7 (0.5")	161.93 (6.38")	14 (0.55")	56 (2.31")	
D1	Inch	ISO 3019/1 Splined, SAE	Splined 15T 16/32 DP, flat root, side fit ANSI B92.1		ø127 (5")	12.7 (0.5")	161.93 (6.38")	14 (0.55")	56 (2.31")	

	PV063~PV092 Dimensions									
	Mounti	ng	øΑ	øΒ	С	D	øΕ	F	Н	
M (standard)	(standard) Metric ISO 3019/2 Splined, DIN 5480		ø40	ø160 h8	12x8x80	9	200	18	92	
N	Inch	ISO 3019/2 Cylindric, key	ø44.45 (1.75")	01524 (6")		12.7 (0.5")	228.6 (9")	20.6 (0.81")	90 (3.54")	
	Mounti	ng	Shaft		øΒ	D	øΕ	F	Н	
K (standard)	K (standard) Metric ISO 3019/2 Cylindric, key			Splined W40x1.5x25x8f DIN 5480		9	200	18	56	
D	Inch	ISO 3019/1 Splined, SAE	Splined 15T 16/32 DP, flat root, side fit ANSI B92.1		ø152.4 (6")	12.7 (0.5")	228.6 (9")	20.6 (0.81")	75 (2.95")	

	PV140~PV180 Dimensions										
	Mountin	ıg	øΑ	ø B	С	D	øΕ	F	Н		
M (standard)	Metric	ISO 3019/2 Splined, DIN 5480	ø50	ø160 h8	14x9x75	9	200	18	92		
N	Inch	ISO 3019/2 Cylindric, key	ø50.8 (2")	ø50.8 (2")		12.7 (0.5")	228.6 (9")	20.6 (0.81")	99.4 (3.91")		
F	Inch	ISO 3019/2 Splined, DIN 5480	ø44.45	ø152.4 (6")	11.11x11.11	12.7 (0.5")	228.6 (9")	20.6 (0.81")	75 (2.95")		
	Mountin	ig	Shaft		øΒ	D	øΕ	F	Н		
H (standard)	Metric	ISO 3019/2 Cylindric, key	Splined W5 DIN 5		ø160 h8	9	200	18	78		
D	Inch	ISO 3019/1 Splined, SAE		Splined 15T 8/16 DP, flat root, side fit ANSI B92.1		12.7 (0.5")	228.6 (9")	20.6 (0.81")	88 (3.46")		
G	Inch	ISO 3019/1 Splined, SAE	Splined 13T 8/16 DP, flat root, side fit ANSI B92.1		ø152.4 (6")	12.7 (0.5")	228.6 (9")	20.6 (0.81")	75 (2.95")		

PV270 Dimensions									
	Mountin	g	øΑ	ø B	С	D	øΕ	F	Н
M (standard)	Metric	ISO 3019/2 Splined, DIN 5480	ø65	ø200 h8	18x11x98	9	250	22	115
N	N Inch ISO 3019/2 Ø50.8 (2") Ø165.1 (6.		ø165.1 (6.5")	12.7x12.7x75 (1/2")	15.9 (0.37")	317.5 (12.5")	20.6 (0.81")	97.5 (3.84")	
	Mountin	g	Shaft		øΒ	D	øE	F	Н
K (standard)	K (standard) Metric ISO 3019/2 Cylindric, key		Splined W60x2x28x8f DIN 5480		ø200 h8	9	250	22	80
D	Inch	ISO 3019/1 Splined, SAE	Splined 15T 8/16 DP, flat root, side fit ANSI B92.1		ø165.1 (6.5")	15.9 (0.37")	317.5 (12.5")	20.6 (0.81")	88(3.46")

Thru drive, shaft load limitations

The max. transferable torque in Nm for the different shafts options are:

Shaft code	PV16~23	PV32~46	PV63~92	PV140~180	PV270
N	300	550	1320	2000	2000
D	300	610	1218	2680	2680
F	-	-	-	1320	-
G	-	-	-	1640	-
M	300	570	1150	1900	2850
K	405	675	1400	2650	3980

Important notice

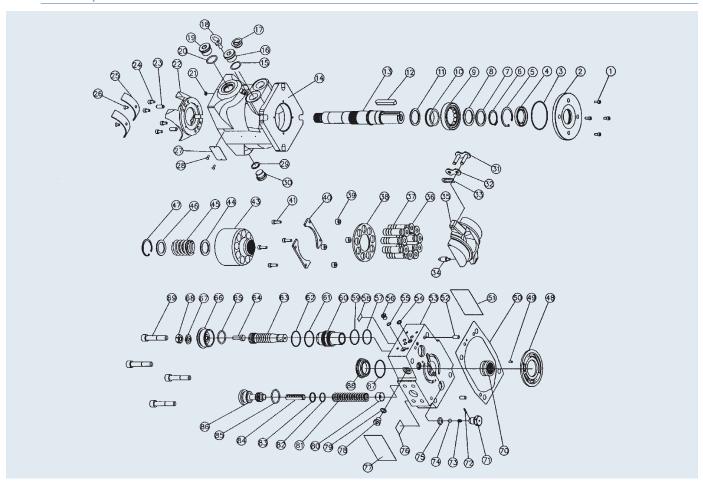
The max. allowable torque of the individual shaft must not be exceeded. For 2-pump combinations there is no problem because PV series offers 100% thru torque. For 3-pump combinations (and more) the limit torque could be reached or exceeded.

Therefore it is necessary to calculate the torque factor and compare it with the allowed torque limit factor in the table.

Required: calculated torque factor <torque limit factor

To make the necessary calculations easier and more user friendly it is not required to calculate actual torque requirements in Nm and compare them with the shaft limitations. The table on the right shows limit factors that include material specification, safety factors and conversion factors.

The total torque factor is represented by the sum of the individual torque factors of all pumps in the complete pump combination.


The torque factor of each individual pump is calculated by multiplying the max. operating pressure p of the pump (in bar) with the max. displacement Vg of the pump (in cc/rev)

Pump	Shaft	Torque limit factor
•	N	17700
PV016	D	17700
PV023	M	17700
PV023	K	20130
	N	32680
PV032	D	36380
PV046	М	33810
1 1040	K	40250
	N	77280
PV063	D	72450
PV092	М	67620
	K	83720
	N	118400
D1// 40	D	158760
PV140	F	78750
PV180	G	97650
	М	113400
	K	157500
	N	119000
PV270	D	159700
	M	170100
	K	236250

Total torque factor of the comination= sum of individual torque factors of all pumps

Torque factor of any pump=P x Vg (Pressure in bar x displacement in cc/rev)

Decomposition Chart

List of parts

No	Description	Quantity	No	Description	Quantity	No	Description	Quantity	No	Description	Quantity
	Decomplian	Quantity		Decomplian	Guantity		Decomplian	Qualitity	110.	Decomplian	Guantity
1	Head cap screw	4	23	Pin	2	46	Washer	1	68	Piston nut	1
2	Pilot cover	1	24	Screw	4	47	Snap ring	1	69	Screw	1
3	O-ring	1	25	Trunnion bearing	2	48	Valve plate	1	70	Trunnion bearing	1
4	Shaft seal	1	26	Screw	2	49	Pin	1	71	Plug	1
5	Snap ring	1	27	Name plate	1	50	Seal	1	72	Pin	1
6	Snap ring	1	28	Rivet	2	51	Seal	1	73	Spring	1
7	Washer	1	29	O-ring	1	52	Pin	1	74	Ball	1
8	Washer	1	30	Plug	1	53	Pump body	2	75	O-ring	2
9	Roller bearing	1	31	Chain link	1	54	O-ring	1	76	Label	1
10	Roller bearing	1	32	Chain link	1	55	O-ring	1	77	Seal	1
11	Roller bearing	1	33	Chain link	1	56	Plug	1	78	Plug	1
12	Key	1	34	Connector servo spring	1	57	O-ring	1	79	O-ring	1
13	Shaft	1	35	Swash plate	1	58	Label	1	80	Washer	1
14	Pump body	1	36	Piston	9	59	O-ring	1	81	Spring	1
15	O-ring	1	37	Piston	9	60	Servo pistion sleeve	1	82	O-ring	1
16	Plug	1	38	Slipper segment	1	61	O-ring	1	83	O-ring	1
17	Plug	1	39	Washer	4	62	O-ring	1	84	Pin	1
18	Ring	1	40	Retainer segment	2	63	Servo piston	1	85	O-ring	1
19	Plug	1	41	Screw	4	64	Set screw	1	86	Screw	1
20	O-ring	1	43	Cylinder block	1	65	O-ring	1	87	O-ring	1
21	O-ring	1	44	Washer	1	66	Servo spring cover	1	88	Spring cover	1
22	Cradle	1	45	Spring	1	67	Washer	1			

General installation information

1 Fluid recommendations

Premium quality hydraulic mineral oil fluids are recommended, like H-LP oils to DIN 51524, part 2. The viscosity range should be 25 to 50 s mm²/(cst) at 50°C. Operating temperatures -10 to +70°C. For other fluids such as phosphoric acid esters or for, other operating conditions consult HYDROME for assistance.

2. Seals

NBR (Nitrile) seals are used for operation with hydraulic fluids based on mineral oil. For synthetic, as perhaps phosphoric acid esters, Fluorocarbon seals are required. Consult HYDROME for assistance.

3. Filtration

For maximum pump and system component functionability and life, the system should be protected from contamination by effective filtration. Fluid cleanness should be in accordance with ISO classification ISO 4406. The quality of filter elements should be in accordance with ISO standards.

- Minimum requirement for filtration rate x (um): General hydraulic systems for satisfactory operation: Class 19/15, to ISO 4406. X=25 μm(β10≥75) to ISO 4572
- (2) Hydraulic systems with maximized component life and functionability:

Class 16/13, to ISO 4406. X=10 μ m(B10 \geq 75) to ISO 4572 It is recommended to use return line or pressure filters. HYDROME Filter Division offers a wide range of these filters for all common applications and mounting styles. The use of suction filters should be avoided, especially with fast response pumps. Bypass filtration is a good choice for best filter efficiency.

4. Installation and mounting

Horizontal mounting: Outlet port side or top. Inlet port side or bottom, drain port always uppermost.

Vertical mounting: Shaft pointing upwards.

Install pump and suction line in such a way that the maximum inlet vacuum never exceeds 0.8 bar absolute.

The inlet line should be as short and as straight as possible. A short suction line cut to 45° is recommended when the pump is mounted inside the reservoir, to improve the inlet conditions. All connections to be leadfree, as air in the suction line will cause cavitations, noise, and damage to the pump.

5. Shaft rotation and alignment

Pump and motor shafts must be aligned within 0.25mm T.I.R. maximum. A floating coupling must be used.

Bell housings and couplings can be ordered at manufacturers listed in this catalogue. Please follow the coupling manufacturer's installation instructions.

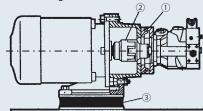
Consult HYDROME for assistance on radial load type drives.

6. Start up

Prior to start up, the pump case must be filled with hydraulic fluid (use case drain port). Initial start up should be at zero pressure with an open circuit to enable the pump to prime. Pressure should only be increased once the pump has been fully primed.

Attention: Check motor rotation direction.

Operating noise of pumps


The normal operating noise of a pump and consequently the operating noise of the entire hydraulic system is largely determined by where and how the pump is mounted and how it is connected to the down stream hydraulic system. Also size, style and installation of the hydraulic tubing have a major influence on the overall noise emitted by a hydraulic system.

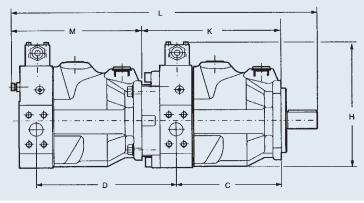
Noise reduction measures

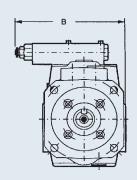
Flexible elements help to prevent pump body vibration being transmitted to other construction elements, where possible amplification may occur, Such elements can be:

Bell housing with elastic dampening flange with vulcanized labyrinth ${\color{dkgray}\textbf{@}}$

- (1)Floating and flexible coupling ②
- (2) Damping rails 3
- (3)Or silent blocks for mounting the electric motor or the foot mounting flange
- (4)Flexible tube connections (compensators) or hoses on inlet, outlet and drain port of the pump.
- (5) Exclusive use of gas tight tube fittings for inlet connections to avoid ingression of air causing cavitations and excessive noise.

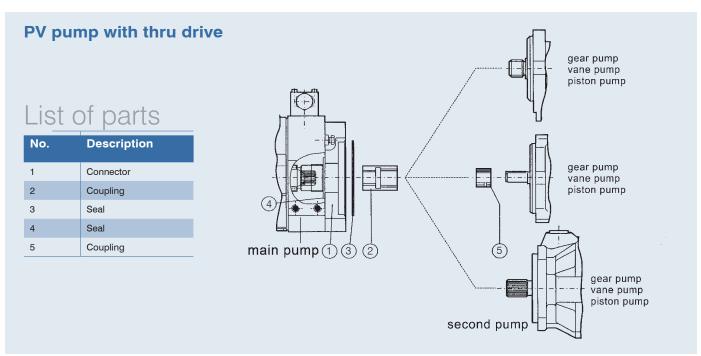
7. Drain line


The drain line must lead directly to the reservoir without restriction. The drain line must not be connected to any other return line. The end of the drain line must be below the lowest fluid level in the reservoir and as far away as possible from the pump inlet line. This ensures that the pump does not empty itself when not in operation and that hot aireated oil will not be recirculated. For the same reason, when the pump is mounted inside the reservoir, the drain line should be arranged in such a way that a siphon is created. This ensures that the according to the port size and a straight low pressure fitting with maximized bore should be used.


	PV016~PV023	PV032~PV046	PV063~PV092	PV140~PV180	PV270
Size of pipe joints	3/8 (ø8.5 or more)	1/2 (ø12 or more)	3/4 (ø16 or more)	1 (ø19 or more)	1-1/4 (ø22 or more)
I.D. of pipes	ø12 or more	ø15 or more	ø19 or more	ø25 or more	ø32 or more
Length of drain	Under 1m	Under 1m	Under 1m	Under 1m	Under 1m

PV SERIES TANDEM AXIAL PISTON PUMP

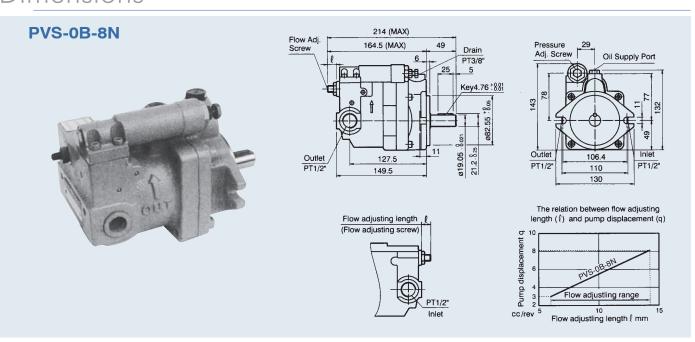
Dimensions



Main pump	Second pump	Interface main pump	L	В	С	D	Н	K	M
PV16, 20, 23	PV16, 20, 23	100 B4 HW	489	196	170.5	225	220	225	212
PV32, 40, 46	PV16, 20, 23 PV32, 40, 46	125 B4 HW	541 574	208 208	197 197	235.5 261	245 245	261 261	212 245
PV63, 80, 92	PV16, 20, 23 PV32, 40, 46 PV63, 80, 92	160 B4 HW	630 663 724	232 232 232	252 252 252	244.5 271 326	299 299 299	326 326 326	212 245 306
PV140, 180	PV16, 20, 23 PV32, 40, 46 PV63, 80, 92 PV140, 180	160 B4 HW	719 752 813 878	230 230 230 230	305 305 305 305	280.5 307 362 415	349 349 349 349	415 415 415 415	212 245 306 385
PV270	PV16, 20, 23 PV32, 40, 46 PV63, 80, 92 PV140, 180 PV270	200 B4 HW	860 893 954 1033 1134	255 255 255 255 255	403 403 403 403 403	299 325.5 380.5 433.5 531.5	406 406 406 406 406	531.5 531.5 531.5 531.5 531.5	212 245 306 385 510

Combination PV140/180+PV140/180 and PV270+PV270 only with splined shaft on main pump due to high torque

PVS, PZS SERIES VARIABLE VOLUME PISTON PUMP

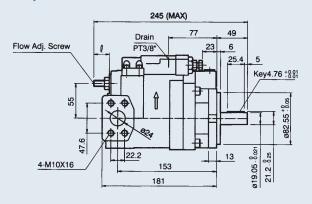


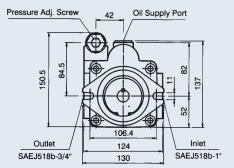
How to order

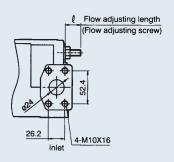
PVS - 1 B - 16 N 2 - R - **								
4	2 3 4 5 6 7 8 PVS: Pump size 0, 1, 2 PZS: Pump size 3, 4							
1								
2	Pump sizes: 0: 8 cc/rev 1: 16, 22 cc/rev 2: 36, 46 cc/rev 3: 70 cc/rev 4: 100 cc/rev							
3	Mounting Type: B: Flange type (normal) A: Foot type							
4	Displacement: 8, 16.5, 22, 36, 46, 70, 100 cc/rev							
5	Control types standard type: N Option type: P, NQ, RS (RA), WS (WA), HL							
6	Pressure adjusting PVS 0: 20-40 bar 1: 20-73 bar 2: 30-145 bar 3: 30-215 bar PZS 1: 20-73 bar 3: 30-215 bar 4: 30-286 bar							
7	Shaft rotation (viewed from shaft end) R: Clockwise L: Counter clockwise							
8	Shaft type none: Cylindric, key S: Splined, SAE							

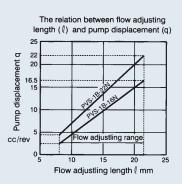
Specifications

Model	Displacement cc/rev	Unloading Conditions (Ipm)			Pressure Adj. Range	Max . Pressure	Input Speed Range (rpm)		Weight
model		1200 rpm	1500 rpm	1800 rpm	bar	bar	Min.	Max.	(kg)
PVS-0B-8	8	9.6	12	14.4	0: 20-40		255 500	2000	9
PVS-1B-16	16.5	19.8	24.7	29.7	1: 20-73				12
PVS-1B-22	22	26.4	33	39.6		255			12
PVS-2B-35	36	43.2	54	64.8	2: 30-145				23
PVS-2B-45	46	55.2	69	82.8	3: 30-215				23
PZS-3B-70	70	84	105	126	1: 20-73 3: 30-215	286			41
PZS-4B-100	100	120	150	180	4: 30-286	200			60

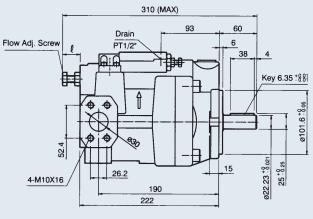

PVS, PZS SERIES VARIABLE VOLUME PISTON PUMP

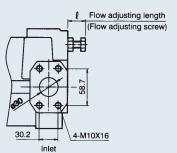

Control Types

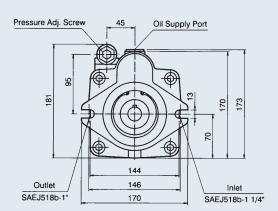

Туре	External View	JIS Symbols	Characteristics	Description
N	Flow Adj. Screw Pressure Adj. Screw	Outlet A TO	Pressure	Pressure Compensating Type (Manual) 1. When the pressure reaches the value set with the compensator, the flow is reduced automatically and the set pressure is maintained. 2. The pressure and flow are controlled manually.
Р	Flow Adj. Screw Remote Port	V. Outlet	No III	1. The pressure can be controlled according to the pilot pressure. 2. The flow can be controlled manually.
NQ	QH Flow Adj. Screw QL Flow Adj. Screw Adj. Screw Adj. Screw	Outlet M M M N N N N N N N N N N N N N N N N	qL PL PH PH	Two Pressure-Two Flow Control Type 1. By means of the sequence valve, two stage flow rate can be obtained and each flow rate has the different pressure eventually enabling energy savings.
RS (RA)	Pressure Adj. Screw (SOL"ON") Flow Adj. Screw	Outlet S Dr.	SOL SOL "OFF" "ON"	Solenoid Cut-Off Control Type 1. An unloading solenoid valve is used to minimize the lost energy when the pump output is not required. 2. Heat generated is very small.
WS (WA)	Pressure Adj. Screw (SOL"OFF") Flow Adj. Screw (SOL"ON")	Outlet S Dr.	SOL SOL "OFF" "ON"	Two Pressure Cut-Off Control Type 1. By means of "ON" "OFF" control of solenoid valves, two different pressure compensating types can be obtained.
HL	Pressure Adj. Screw Load Control Poit Flow Adj. Screw	Outlet V: L S Dr.	Pressure	 Load Sensing Control The "HL" compensator is used for load sensing circuits and is a true load sensor. This is the "P" compensator with a pin in the compensator spool. The pin prevents pilot flow from entering the circuit which will eliminate creeping of the load. The "HL" compensator will let the pump deliver a constant flow rate to the circuit by providing an adjustable ΔP across the customers orifice or valve. The pump will operate at 17.2~27.5 bar (250-400 psi) above "Load pressure".

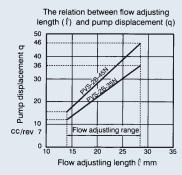

Dimensions

PVS-1B-16N, PVS-1B-22N

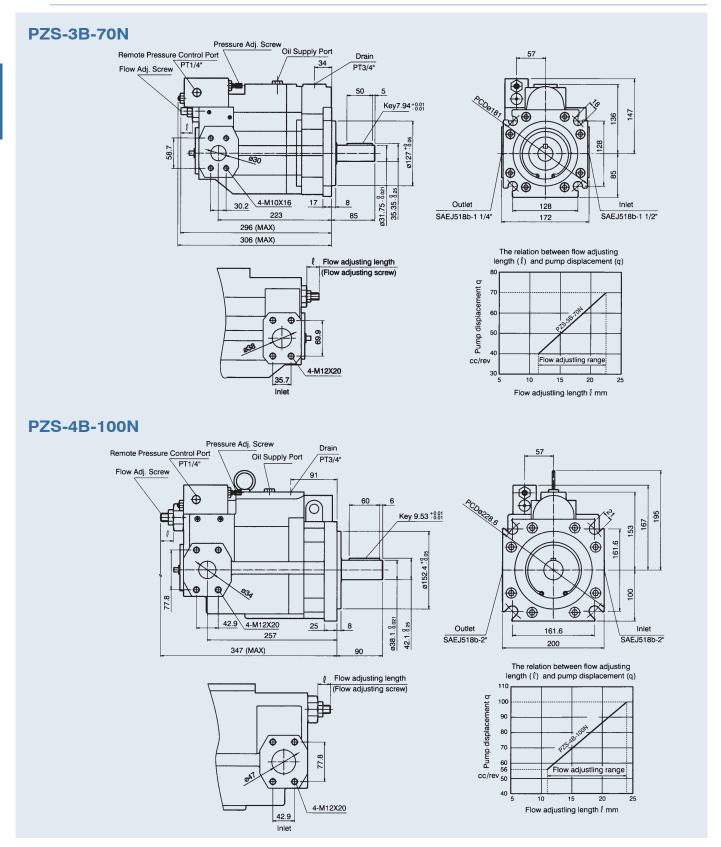


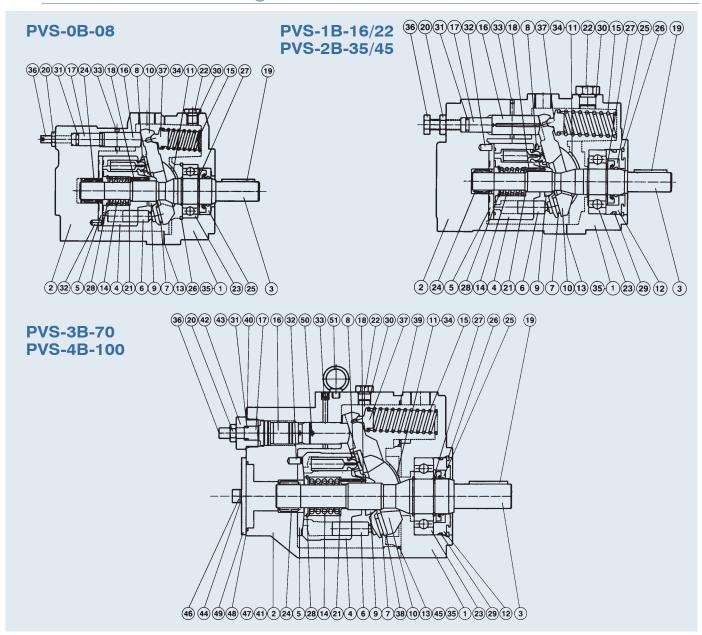






PVS-2B-35N, PVS-2B-45N





PVS, PZS SERIES VARIABLE VOLUME PISTON PUMP

PVS, PZS SERIES VARIABLE VOLUME PISTON PUMP

Cross section drawing

Parts list

NO.	Part Name	NO.	Part Name	No.	Part Name	NO.	Part Name	No.	Part Name
1	Bady	9	Barrel holder	17	Guide	25	Oil seal	33	Expander plug
2	Case	10	Swash plate	18	Needle	26	Snap ring	34	Machine screw
3	Shaft	11	Thrust bush	19	Key	27	Snap ring	35	Machine screw
4	Cylinder barrel	12	Seal holder	20	Nut	28	Snap ring	36	Flow adj. screw
5	Valve plate	13	Gasket	21	Retainer	29	O-ring	37	Spring Holder
6	Piston	14	Spring	22	Plug	30	O-ring		
7	Shoe	15	Spring	23	Ball bearing	31	O-ring		
8	Shoe holder	16	Control Piston	24	Needle bearing	32	Pin		

MEXICO BRANCH OFFICE

Roberto Diaz No. 401 Ciudad Industrial Aguascalientes, Ags. México 20290

4ManPro@4ManPro.com (449) 171 3420 www.4ManPro.com/SPA/

USA BRANCH OFFICE 4ManPro®

708 Main St. 10th Floor Houston, Tx, USA 77002

4ManPro-USA@4ManPro.com +1 (832) 871 5022 www.4ManPro.com/ENG/

<mark>Elemente</mark> For Manufacturing Processes

